Welcome

We work on developing and extending new machine learning techniques for precision medicine, the life sciences and clinical data analysis. This field is exciting and challenging because new methods for a better understanding of diseases are enormous important. The field of action comprises many areas such as prediction of response to treatment in personalized medicine, (sparse) biomarker detection, tumor classification or the understanding of interactions between genes or groups of genes. The challenge lies not only in developing fast, robust and reliable systems but also in systems that are easy to interpret and usable in clinical practice.

News


Inaugural Lecture from Prof. Dr. Julia Vogt

Julia Vogt will give her inaugural lecture at ETH Zurich on Wednesday, November 4, 2020.


Interview with eQual! at ETH

Portrait of Julia Vogt: Interview with eQual! at ETH


Software soll Medizinern helfen, die richtige Entscheidung zu treffen

Julia Vogt interviews with netzwoche.ch about personalized medicine for the IT for health special


Publications


Abstract

Clinical pharmacology is a multi-disciplinary data sciences field that utilizes mathematical and statistical methods to generate maximal knowledge from data. Pharmacometrics (PMX) is a well-recognized tool to characterize disease progression, pharmacokinetics and risk factors. Since the amount of data produced keeps growing with increasing pace, the computational effort necessary for PMX models is also increasing. Additionally, computationally efficient methods such as machine learning (ML) are becoming increasingly important in medicine. However, ML is currently not an integrated part of PMX, for various reasons. The goals of this article are to (i) provide an introduction to ML classification methods, (ii) provide examples for a ML classification analysis to identify covariates based on specific research questions, (iii) examine a clinically relevant example to investigate possible relationships of ML and PMX, and (iv) present a summary of ML and PMX tasks to develop clinical decision support tools.

Authors

Gilbert Koch, Marc Pfister, Imant Daunhawer, Melanie Wilbaux, Sven Wellmann, Julia E. Vogt

Submitted

Clinical Pharmacology & Therapeutics

Link DOI

Abstract

Despite the application of advanced statistical and pharmacometric approaches to pediatric trial data, a large pediatric evidence gap still remains. Here, we discuss how to collect more data from children by using real-world data from electronic health records, mobile applications, wearables, and social media. The large datasets collected with these approaches enable, and may demand, the use of artificial intelligence and machine learning to allow the data to be analyzed for decision-making. Applications of this approach are presented, which include the prediction of future clinical complications, medical image analysis, identification of new pediatric endpoints and biomarkers, the prediction of treatment non-responders and the prediction of placebo-responders for trial enrichment. Finally, we discuss how to bring machine learning from science to pediatric clinical practice. We conclude that advantage should be taken of the current opportunities offered by innovations in data science and machine learning to close the pediatric evidence gap.

Authors

Sebastiaan C. Goulooze, Laura B. Zwep, Julia E. Vogt, Elke H.J. Krekels, Thomas Hankemeier, John N. van den Anker, Catherijne A.J. Knibbe

Submitted

Clinical Pharmacology & Therapeutics

Link DOI

Abstract

Learning from different data types is a long standing goal in machine learning research, as multiple information sources co-occur when describing natural phenomena. Existing generative models that try to approximate a multimodal ELBO rely on difficult training schemes to handle the intermodality dependencies, as well as the approximation of the joint representation in case of missing data. In this work, we propose an ELBO for multimodal data which learns the unimodal and joint multimodal posterior approximation functions directly via a dynamic prior. We show that this ELBO is directly derived from a variational inference setting for multiple data types, resulting in a divergence term which is the Jensen-Shannon divergence for multiple distributions. We compare the proposed multimodal JS-divergence (mmJSD) model to state-of-the-art methods and show promising results using our model in unsupervised, generative learning using a multimodal VAE on two different datasets.

Authors

Thomas Sutter, Imant Daunhawer, Julia E. Vogt

Submitted

Visually Grounded Interaction and Language Workshop, NeurIPS 2019

Abstract

Multimodal generative models learn a joint distribution of data from different modalities---a task which arguably benefits from the disentanglement of modality-specific and modality-invariant information. We propose a factorized latent variable model that learns named disentanglement on multimodal data without additional supervision. We demonstrate the disentanglement capabilities on simulated data, and show that disentangled representations can improve the conditional generation of missing modalities without sacrificing unconditional generation.

Authors

Imant Daunhawer, Thomas Sutter, Julia E. Vogt

Submitted

Bayesian Deep Learning Workshop, NeurIPS 2019

Abstract

Electronic Health Records (EHRs) are commonly used by the machine learning community for research on problems specifically related to health care and medicine. EHRs have the advantages that they can be easily distributed and contain many features useful for e.g. classification problems. What makes EHR data sets different from typical machine learning data sets is that they are often very sparse, due to their high dimensionality, and often contain heterogeneous data types. Furthermore, the data sets deal with sensitive information, which limits the distribution of any models learned using them, due to privacy concerns. In this work, we explore using Generative Adversarial Networks to generate synthetic, \textit{heterogeneous} EHRs with the goal of using these synthetic records in place of existing data sets. We will further explore applying differential privacy (DP) preserving optimization in order to produce differentially private synthetic EHR data sets, which provide rigorous privacy guarantees, and are therefore more easily shareable. The performance of our model's synthetic, heterogeneous data is very close to the original data set (within 4.5%) for the non-DP model. Although around 20% worse, the DP synthetic data is still usable for machine learning tasks.

Authors

Kieran Chin-Cheong, Thomas Sutter, Julia E. Vogt

Submitted

Machine Learning for Health (ML4H) Workshop, NeurIPS 2019