MSc.

Ricards Marcinkevics

PhD Student

E-Mail
ricardsm@inf.ethz.ch
Phone
+41 44 632 07 98
Address
Department of Computer Science
CAB E 66
Universitätstr. 6
CH – 8092 Zurich, Switzerland
Room
CAB E 66

I completed my master's in Statistics in 2019 at the Department of Mathematics, ETH, where I focused on Machine Learning and Biostatistics.

I enjoy participating in interdisciplinary projects and leveraging Machine Learning methods to analyse biomedical data. I'm broadly interested in time series analysis, causal discovery, interpretability, and explainability and how these tasks can be tackled using state-of-the-art ML models.

Abstract

Appendicitis is a common childhood disease, the management of which still lacks consolidated international criteria. In clinical practice, heuristic scoring systems are often used to assess the urgency of patients with suspected appendicitis. Previous work on machine learning for appendicitis has focused on conventional classification models, such as logistic regression and tree-based ensembles. In this study, we investigate the use of risk supersparse linear integer models (risk SLIM) for learning data-driven risk scores to predict the diagnosis, management, and complications in pediatric patients with suspected appendicitis on a dataset consisting of 430 children from a tertiary care hospital. We demonstrate the efficacy of our approach and compare the performance of learnt risk scores to previous analyses with random forests. Risk SLIM is able to detect medically meaningful features and outperforms the traditional appendicitis scores, while at the same time is better suited for the clinical setting than tree-based ensembles.

Authors

Pedro Roig Aparicio, Ricards Marcinkevics, Patricia Reis Wolfertstetter, Sven Wellmann, Christian Knorr, Julia E. Vogt

Submitted

Short paper at 20th IEEE International Conference on Machine Learning and Applications, ICMLA 2021

Abstract

Sleep is crucial to restore body functions and metabolism across nearly all tissues and cells, and sleep restriction is linked to various metabolic dysfunctions in humans. Using exhaled breath analysis by secondary electrospray ionization high-resolution mass spectrometry, we measured the human exhaled metabolome at 10-s resolution across a night of sleep in combination with conventional polysomnography. Our subsequent analysis of almost 2,000 metabolite features demonstrates rapid, reversible control of major metabolic pathways by the individual vigilance states. Within this framework, whereas a switch to wake reduces fatty acid oxidation, a switch to slow-wave sleep increases it, and the transition to rapid eye movement sleep results in elevation of tricarboxylic acid (TCA) cycle intermediates. Thus, in addition to daily regulation of metabolism, there exists a surprising and complex underlying orchestration across sleep and wake. Both likely play an important role in optimizing metabolic circuits for human performance and health.

Authors

Nora Nowak, Thomas Gaisl, Djordje Miladinovic, Ricards Marcinkevics, Martin Osswald, Stefan Bauer, Joachim Buhmann, Renato Zenobi, Pablo Sinues, Steven A. Brown, Malcolm Kohler

Submitted

Cell Reports

LinkDOICode

Abstract

In this work, we study the problem of clustering survival data — a challenging and so far under-explored task. We introduce a novel semi-supervised probabilistic approach to cluster survival data by leveraging recent advances in stochastic gradient variational inference. In contrast to previous work, our proposed method employs a deep generative model to uncover the underlying distribution of both the explanatory variables and censored survival times. We compare our model to the related work on clustering and mixture models for survival data in comprehensive experiments on a wide range of synthetic, semi-synthetic, and real-world datasets, including medical imaging data. Our method performs better at identifying clusters and is competitive at predicting survival times. Relying on novel generative assumptions, the proposed model offers a holistic perspective on clustering survival data and holds a promise of discovering subpopulations whose survival is regulated by different generative mechanisms.

Authors

Laura Manduchi, Ricards Marcinkevics, Michela C. Massi, Thomas Weikert, Alexander Sauter, Verena Gotta, Timothy Müller, Flavio Vasella, Marian C. Neidert, Marc Pfister, Bram Stieltjes, Julia E. Vogt

Submitted

Arxiv

LinkCode

Abstract

Autonomic peripheral activity is partly governed by brain autonomic centers. However, there is still a lot of uncertainties regarding the precise link between peripheral and central autonomic biosignals. Clarifying these links could have a profound impact on the interpretability, and thus usefulness, of peripheral autonomic biosignals captured with wearable devices. In this study, we take advantage of a unique dataset consisting of intracranial stereo-electroencephalography (SEEG) and peripheral biosignals acquired simultaneously for several days from four subjects undergoing epilepsy monitoring. Compared to previous work, we apply a deep neural network to explore high-dimensional nonlinear correlations between the cerebral brainwaves and variations in heart rate and electrodermal activity (EDA). Further, neural network explainability methods were applied to identify most relevant brainwave frequencies, brain regions and temporal information to predict a specific biosignal. Strongest brain-peripheral correlations were observed from contacts located in the central autonomic network, in particular in the alpha, theta and 52 to 58 Hz frequency band. Furthermore, a temporal delay of 12 to 14 s between SEEG and EDA signal was observed. Finally, we believe that this pilot study demonstrates a promising approach to mapping brain-peripheral relationships in a data-driven manner by leveraging the expressiveness of deep neural networks.

Authors

Alexander H. Hatteland, Ricards Marcinkevics, Renaud Marquis, Thomas Frick, Ilona Hubbard, Julia E. Vogt, Thomas Brunschwiler, Philippe Ryvlin

Submitted

Best paper award at IEEE International Conference on Digital Health, ICDH 2021

LinkDOI

Abstract

Background: Given the absence of consolidated and standardized international guidelines for managing pediatric appendicitis and the few strictly data-driven studies in this specific, we investigated the use of machine learning (ML) classifiers for predicting the diagnosis, management and severity of appendicitis in children. Materials and Methods: Predictive models were developed and validated on a dataset acquired from 430 children and adolescents aged 0-18 years, based on a range of information encompassing history, clinical examination, laboratory parameters, and abdominal ultrasonography. Logistic regression, random forests, and gradient boosting machines were used for predicting the three target variables. Results: A random forest classifier achieved areas under the precision-recall curve of 0.94, 0.92, and 0.70, respectively, for the diagnosis, management, and severity of appendicitis. We identified smaller subsets of 6, 17, and 18 predictors for each of targets that sufficed to achieve the same performance as the model based on the full set of 38 variables. We used these findings to develop the user-friendly online Appendicitis Prediction Tool for children with suspected appendicitis. Discussion: This pilot study considered the most extensive set of predictor and target variables to date and is the first to simultaneously predict all three targets in children: diagnosis, management, and severity. Moreover, this study presents the first ML model for appendicitis that was deployed as an open access easy-to-use online tool. Conclusion: ML algorithms help to overcome the diagnostic and management challenges posed by appendicitis in children and pave the way toward a more personalized approach to medical decision-making. Further validation studies are needed to develop a finished clinical decision support system.

Authors

Ricards Marcinkevics, Patricia Reis Wolfertstetter, Sven Wellmann, Christian Knorr, Julia E Vogt

Submitted

Frontiers in Pediatrics

LinkDOICode

Abstract

Survival analysis has gained significant attention in the medical domain with many far-reaching applications. Although a variety of machine learning methods have been introduced for tackling time-to-event prediction in unstructured data with complex dependencies, clustering of survival data remains an under-explored problem. The latter is particularly helpful in discovering patient subpopulations whose survival is regulated by different generative mechanisms, a critical problem in precision medicine. To this end, we introduce a novel probabilistic approach to cluster survival data in a variational deep clustering setting. Our proposed method employs a deep generative model to uncover the underlying distribution of both the explanatory variables and the potentially censored survival times. We compare our model to the related work on survival clustering in comprehensive experiments on a range of synthetic, semi-synthetic, and real-world datasets. Our proposed method performs better at identifying clusters and is competitive at predicting survival times in terms of the concordance index and relative absolute error.

Authors

Laura Manduchi, Ricards Marcinkevics, Julia E. Vogt

Submitted

Contributed talk at AI for Public Health Workshop at ICLR 2021

Link

Abstract

Exploratory analysis of time series data can yield a better understanding of complex dynamical systems. Granger causality is a practical framework for analysing interactions in sequential data, applied in a wide range of domains. In this paper, we propose a novel framework for inferring multivariate Granger causality under nonlinear dynamics based on an extension of self-explaining neural networks. This framework is more interpretable than other neural-network-based techniques for inferring Granger causality, since in addition to relational inference, it also allows detecting signs of Granger-causal effects and inspecting their variability over time. In comprehensive experiments on simulated data, we show that our framework performs on par with several powerful baseline methods at inferring Granger causality and that it achieves better performance at inferring interaction signs. The results suggest that our framework is a viable and more interpretable alternative to sparse-input neural networks for inferring Granger causality.

Authors

Ricards Marcinkevics, Julia E. Vogt

Submitted

Ninth International Conference on Learning Representations, ICLR 2021

LinkCode

Abstract

In this review, we examine the problem of designing interpretable and explainable machine learning models. Interpretability and explainability lie at the core of many machine learning and statistical applications in medicine, economics, law, and natural sciences. Although interpretability and explainability have escaped a clear universal definition, many techniques motivated by these properties have been developed over the recent 30 years with the focus currently shifting towards deep learning methods. In this review, we emphasise the divide between interpretability and explainability and illustrate these two different research directions with concrete examples of the state-of-the-art. The review is intended for a general machine learning audience with interest in exploring the problems of interpretation and explanation beyond logistic regression or random forest variable importance. This work is not an exhaustive literature survey, but rather a primer focusing selectively on certain lines of research which the authors found interesting or informative.

Authors

Ricards Marcinkevics, Julia E. Vogt

Submitted

Arxiv

Link

Abstract

Exploratory analysis of time series data can yield a better understanding of complex dynamical systems. Granger causality is a practical framework for analysing interactions in sequential data, applied in a wide range of domains. In this paper, we propose a novel framework for inferring multivariate Granger causality under nonlinear dynamics based on an extension of self-explaining neural networks. This framework is more interpretable than other neural-network-based techniques for inferring Granger causality, since in addition to relational inference, it also allows detecting signs of Granger-causal effects and inspecting their variability over time. In comprehensive experiments on simulated data, we show that our framework performs on par with several powerful baseline methods at inferring Granger causality and that it achieves better performance at inferring interaction signs. The results suggest that our framework is a viable and more interpretable alternative to sparse-input neural networks for inferring Granger causality.

Authors

Ricards Marcinkevics, Julia E. Vogt

Submitted

Interpretable Inductive Biases and Physically Structured Learning Workshop, NeurIPS 2020

Link

Abstract

Multimodal generative models learn a joint distribution over multiple modalities and thus have the potential to learn richer representations than unimodal models. However, current approaches are either inefficient in dealing with more than two modalities or fail to capture both modality-specific and shared variations. We introduce a new multimodal generative model that integrates both modality-specific and shared factors and aggregates shared information across any subset of modalities efficiently. Our method partitions the latent space into disjoint subspaces for modality-specific and shared factors and learns to disentangle these in a purely self-supervised manner. In extensive experiments, we show improvements in representation learning and generative performance compared to previous methods and showcase the disentanglement capabilities.

Authors

Imant Daunhawer, Thomas M. Sutter, Ricards Marcinkevics, Julia E. Vogt

Submitted

GCPR

Link

Abstract

The classification of time series data is a well-studied problem with numerous practical applications, such as medical diagnosis and speech recognition. A popular and effective approach is to classify new time series in the same way as their nearest neighbours, whereby proximity is defined using Dynamic Time Warping (DTW) distance, a measure analogous to sequence alignment in bioinformatics. However, practitioners are not only interested in accurate classification, they are also interested in why a time series is classified a certain way. To this end, we introduce here the problem of finding a minimum length subsequence of a time series, the removal of which changes the outcome of the classification under the nearest neighbour algorithm with DTW distance. Informally, such a subsequence is expected to be relevant for the classification and can be helpful for practitioners in interpreting the outcome. We describe a simple but optimized implementation for detecting these subsequences and define an accompanying measure to quantify the relevance of every time point in the time series for the classification. In tests on electrocardiogram data we show that the algorithm allows discovery of important subsequences and can be helpful in detecting abnormalities in cardiac rhythms distinguishing sick from healthy patients.

Authors

Ricards Marcinkevics, Steven Kelk, Carlo Galuzzi, Berthold Stegemann

Submitted

Arxiv

Link

Abstract

Aims: The identification of arrhythmogenic right ventricular dysplasia (ARVD) from 12-channel standard electrocardiogram (ECG) is challenging. High density ECG data may identify lead locations and criteria with a higher sensitivity. Methods and results: Eighty-channel ECG recording from patients diagnosed with ARVD and controls were quantified by magnitude and integral measures of QRS and T waves and by a measure (the average silhouette width) of differences in the shapes of the normalized ECG cycles. The channels with the best separability between ARVD patients and controls were near the right ventricular wall, at the third intercostal space. These channels showed pronounced differences in P waves compared to controls as well as the expected differences in QRS and T waves. Conclusion: Multichannel recordings, as in body surface mapping, add little to the reliability of diagnosing ARVD from ECGs. However, repositioning ECG electrodes to a high anterior position can improve the identification of ECG variations in ARVD. Additionally, increased P wave amplitude appears to be associated with ARVD.

Authors

Ricards Marcinkevics, James O’Neill, Hannah Law, Eleftheria Pervolaraki, Andrew Hogarth, Craig Russell, Berthold Stegemann, Arun V Holden, Muzahir H Tayebjee

Submitted

EP Europace

LinkDOI