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ABSTRACT

Spurious correlations are everywhere. While humans often do not perceive them,
neural networks are notorious for learning unwanted associations, also known
as biases, instead of the underlying decision rule. As a result, practitioners are
often unaware of the biased decision-making of their classifiers. Such a biased
model based on spurious correlations might not generalize to unobserved data,
leading to unintended, adverse consequences. We propose Signal is Harder (SiH),
a variational-autoencoder-based method that simultaneously trains a biased and
unbiased classifier using a novel, disentangling reweighting scheme inspired by
the focal loss. Using the unbiased classifier, SiH matches or improves upon the
performance of state-of-the-art debiasing methods. To improve the interpretability
of our technique, we propose a perturbation scheme in the latent space for visu-
alizing the bias that helps practitioners become aware of the sources of spurious
correlations.

1 INTRODUCTION

The generalization capability of deep neural networks (DNN) highly depends on the quality of the
training data. If spurious correlations are present, the model might ignore the intrinsic signal at-
tributes while still performing reasonably well in classification tasks. However, such a biased model
will not be robust and will not generalize outside the training distribution. To increase the trustwor-
thiness of machine learning algorithms and prevent unwanted consequences, it is crucial to avoid
deploying biased models (Geirhos et al., 2020). Thus, there has been an increased interest in the
community to mitigate this problem. While many methods assume and utilize an observed variable
that captures the source of bias for each data point, recently, some effort has been made to alleviate
this prohibitive assumption (Nam et al., 2020).

For example, consider a dataset comprising of images of vehicles. A DNN might implicitly use the
bias attribute “sky” as a shortcut for classifying planes because most images of airplanes are shot
while they are in the air. Throughout the paper, we will call samples bias-aligned when their bias
attributes are strongly correlated with the label. Here, leveraging the bias as a decision rule leads to
the correct predicted label, e.g. airplane in the sky. Conversely, bias-conflicting data points are the
samples for which the biased decision rule leads to the wrong prediction, e.g. aircraft in the hangar.

Recent efforts by Nam et al. (2020) aim to eliminate the need for an observed variable that captures
the source of bias for each data point. They assume that malignant bias attributes are easier to learn
than the underlying signal. Based on this easy-to-learn assumption, they train a biased classifier
that focuses on the easy, bias-aligned samples. Simultaneously, they train an unbiased classifier by
upweighting the remaining hard, bias-conflicting samples. We propose an alternative reweighting for
the unbiased classifier based on the focal loss (Lin et al., 2017) that does not require the previously
utilized subtle, distorting stability measures. We motivate the usage of this loss function through the
easy-to-learn assumption, which infers that signal is harder to learn than bias.

In addition, we extend the literature by integrating a variational autoencoder (VAE) (Kingma &
Welling, 2014) into the model. At inference time, this allows us to make use of latent perturbations
to remove the biasing attributes from the embeddings, which we then feed to the decoder to visualize
debiased images. Comparing these images with the original reconstructions can help practitioners
uncover unknown biases.
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Contribution We propose a novel reweighting scheme, coined Signal is Harder (SiH), for training
an unbiased classifier.1 Due to the lack of labels for the unknown bias, SiH exploits the assumption
that signal is harder to learn than bias and utilizes a reweighting based on the well-established fo-
cal loss (Lin et al., 2017). We show that this direct mechanism improves the debiasing capabilities
compared to the existing, more complex reweighting scheme by Nam et al. (2020). Additionally, by
training a VAE simultaneously with the classifiers, the unknown bias can be visualized in the recon-
structions. For this, the proposed algorithm perturbs the latent bias embeddings at inference time to
remove the bias without creating artifacts in the reconstructions. We improve upon previous meth-
ods as our minimal perturbation does not change other aspects of the reconstruction, unambiguously
unveiling the unknown spurious attribute.

2 RELATED WORK

Separating samples by difficulty Recent works separate bias-conflicting from bias-aligned sam-
ples to train an unbiased classifier (Nam et al., 2020; Lee et al., 2021; Kim et al., 2021). This
separation can be achieved by differentiating data points through the difficulty of predicting their
label. In a standard classification setting, Zhang & Sabuncu (2018) propose the Generalized Cross
Entropy (GCE) loss to reduce the weight on samples whose labels are hard to predict:

GCE(ŷ, y) =
1− ŷq

q
, (1)

where ŷ is the predicted probability of the correct label y according to the classifier, and q ∈ (0, 1] is
a hyperparameter to control the strength of emphasis. The GCE is best understood by inspecting its
derivative ∂GCE(ŷ,y)

∂θ = ŷq ∂CE(ŷ,y)
∂θ , where θ are the learnable neural network parameters. This loss

upweighs samples that the classifier already predicts well, ignoring samples for which the current
decision rule does not work. Contrary to the GCE loss, the Focal Loss (FL) by Lin et al. (2017) puts
more focus on hard, misclassified examples:

FL(ŷ, y) = (1− ŷ)qCE(ŷ, y) (2)

With this reweighting scheme, the samples whose labels are hard to predict are upweighted such that
the classifier does not ignore the samples for which finding a decision rule is a hard problem.

Debiasing without supervision Previous works focused on predictions with respect to known
sensitive attributes (Sagawa et al., 2020; Edwards & Storkey, 2016; Kim et al., 2019), which are
often difficult to retrieve. For this reason Nam et al. (2020) propose LfF, a new approach to debias
a classifier, which does not require bias attributes. They assume that bias is only malignant if it
is easier to learn than the true signal attribute and leverage the GCE loss to focus on the easy,
bias-aligned samples to train a biased classifier. Simultaneously, they train an unbiased classifier,
designed to learn the true, underlying signal. For this they upweigh the bias-conflicting samples, i.e.
the data points for which the bias can not be utilized to predict the label, by the relative difficulty
score (RDS)

RDS(ŷs, ŷb, y) =
CE(ŷb, y)

CE(ŷs, y) + CE(ŷb, y)
, (3)

where ŷs and ŷb are the predicted probabilities of the correct label y according to the unbiased and
biased classifier, respectively. However, before inserting the CE terms into the above formula, they
apply an empirically motivated exponential moving average and a class-wise normalization by the
maximum CE to each term. In the following section, we will propose an enhanced upweighting
mechanism for the unbiased classifier that does not require weight-distorting stability measures.

Lee et al. (2021) extend the method of Nam et al. (2020) by additionally swapping the learned latent
bias embeddings of different inputs to decouple the bias from the label. At inference time, they
train a decoder to visualize the embeddings with and without swapped bias, such that the unknown
bias can be discovered by analyzing the differences between the two reconstructions. To avoid
misleading artifacts in the visualization, we will propose a more conservative perturbation, which
relies on a VAE trained simultaneously with the classifiers. Further discussion can be found in
Appendix A.

1Our code is publicly available at https://github.com/mvandenhi/Signal-is-Harder
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3 METHOD

We propose a debiasing algorithm, coined Signal is Harder (SiH), consisting of a VAE-based ar-
chitecture and a new weighting mechanism for training the unbiased classifier. The VAE uses two
encoders to map the input into signal and bias embeddings, which are concatenated and passed
through the decoder to reconstruct the original input. Additionally, we train an unbiased and biased
classifier on signal and bias embeddings, respectively. The biased classifier is trained by upweight-
ing bias-aligned samples through the GCE loss. In contrast, the unbiased classifier is trained by
upweighting bias-conflicting samples through our novel focal-loss-based weighting scheme, which
we will introduce in the next paragraph. The generative nature of the model allows us to produce
bias visualizations that help discover the unknown source of bias. We depict the proposed model
structure in Figure 1.

Figure 1: Graphical overview of our model’s structure for a bias-conflicting image. The input x
is passed through the signal and bias encoders Es and Eb to obtain the latent signal and bias em-
beddings zs and zb, which in this example should be the digit two and the color blue, respectively.
These representations are then passed through their respective classifier Cs and Cb to predict the
label. Lastly, zs and zb are concatenated and passed through the decoder D to reconstruct the image.

Reweighting by focal loss We hereby introduce a new reweighting scheme, aiming to utilize the
easy-to-learn assumption not only for the biased but also for the unbiased classifier. Similar to the
GCE that upweighs bias-aligned samples for the biased classifier, we want to utilize a mirrored loss
function that upweighs the remaining bias-conflicting samples for the unbiased classifier.

The aforementioned reasons motivate the inclusion of the focal loss for training the unbiased clas-
sifier. We use this loss to identify samples for which the biased classifier struggles to predict the
correct class and emphasize these presumably bias-conflicting samples by upweighting them when
training the unbiased classifier. As the information learned by the biased classifier should leverage
the unbiased classifier, but not the other way around, we detach the weighting factor from the com-
putational graph during backpropagation and obtain the following update for the unbiased classifier:

∂Ls(ŷs, ŷb, y)

∂θs
= (1− ŷb)

q ∂CE(ŷs, y)

∂θs
, (4)

where q ∈ (0, 1] is a hyperparameter controlling the strength of emphasis. With this loss, we exploit
that bias-conflicting samples are hard to learn for a biased classifier. By focusing on these data
points, the unbiased classifier is forced to learn the signal, as here, leveraging the bias does not
lead to the correct prediction. Most importantly, the straightforward integration of the focal loss for
training the unbiased classifier removes the need for weight-distorting stability measures.

Latent adversarial perturbation To make practitioners aware of the unknown spurious corre-
lations in a dataset, we propose a visualization approach by perturbing the bias at inference time.
We perturb the bias embeddings, such that the bias contained within is removed, and reconstruct
the debiased image. We argue that such a perturbation should be as small as possible, such that no
artifacts are created in the process since a practitioner needs to consider every change to the input
as a potential bias. To achieve this, we adapt and utilize the adversarial perturbations from Deep-
fool (Moosavi-Dezfooli et al., 2016). This algorithm is designed to find a minimal perturbation to
the input that fools the classifier into predicting the wrong class. Thus, we perturb the bias rep-
resentations such that the biased classifier can no longer predict the correct class; effectively, the
perturbation removes the bias from the bias embeddings.
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Table 1: Unbiased test set accuracy + standard deviation in %. The method with the significantly
highest accuracy is denoted in bold. Otherwise, insignificantly different methods are underlined.

Dataset Ratio Vanilla LfF DisEnt SiH

Colored MNIST

20% 94.92 ± 0.24 70.18 ± 4.19 90.94 ± 1.46 85.24 ± 1.60
10% 91.24 ± 0.26 81.99 ± 5.01 89.12 ± 1.44 85.35 ± 1.23
5% 85.48 ± 0.50 81.18 ± 2.94 85.54 ± 2.49 86.14 ± 1.78
2% 73.28 ± 0.56 76.97 ± 2.49 82.38 ± 1.68 83.80 ± 1.28
1% 59.41 ± 0.39 68.91 ± 5.01 76.33 ± 3.41 80.03 ± 2.04

0.5% 43.70 ± 0.83 60.42 ± 2.72 63.98 ± 4.78 71.63 ± 2.49

Corrupted CIFAR-10

20% 67.57 ± 0.41 64.50 ± 2.17 60.99 ± 5.84 66.75 ± 1.34
10% 57.11 ± 0.76 59.29 ± 3.16 53.47 ± 4.43 61.26 ± 2.06
5% 46.89 ± 0.78 55.77 ± 2.33 46.40 ± 5.81 55.63 ± 1.54
2% 34.90 ± 0.81 47.26 ± 1.56 36.98 ± 4.43 43.66 ± 1.81
1% 28.22 ± 0.73 39.39 ± 2.16 31.22 ± 2.69 35.17 ± 1.19

0.5% 22.26 ± 1.03 30.04 ± 1.67 31.97 ± 3.34 27.30 ± 2.04

Having trained a VAE, we can use the decoder at inference time to visualize the perturbed bias
embeddings together with the unchanged signal representation. By comparing the original recon-
struction with the debiased visualization, it is possible to identify the spurious correlations in the
image. In contrast to DisEnt, we train the decoder simultaneously with the classifiers to encode all
image-relevant information in the latent representations, thus, supporting the unbiased classifier in
finding the signal attributes and improving reconstruction quality.

4 EXPERIMENTS

To compare the performance of our method, SiH, with previous works, we evaluate it on Colored
MNIST (Kim et al., 2019) and Corrupted CIFAR-10 (Hendrycks & Dietterich, 2019) with a varying
percentage of bias-conflicting images during the training. For a detailed description of the datasets,
we refer to Appendix C. We determine three baselines to which we compare the proposed approach.
The first baseline we implement is a Vanilla model consisting of one encoder and classifier, which
measures the standard performance without any debiasing scheme. The second model we compare
the proposed approach to, is LfF from Nam et al. (2020). Lastly, we compare SiH to DisEnt by Lee
et al. (2021), a recently proposed state-of-the-art debiasing algorithm, which also visualizes the bias.

4.1 QUANTITATIVE EVALUATION

Comparison on test sets In Table 1, we show the performance of all models on the unbiased test
set of Colored MNIST and Corrupted CIFAR-10. The estimates differ from the values presented
in the baseline papers (Nam et al., 2020; Lee et al., 2021) because we also vary random seeds over
dataset generation instead of only over the weight initialization.

We observe that Vanilla outperforms the debiasing algorithms for the 10% and 20% cases of Col-
ored MNIST. Thus, the easy-to-learn assumption is likely not fulfilled for these training sets. The
debiasing methods show their benefit only for a lower amount of bias-conflicting samples. Here,
SiH outperforms or at least matches all baselines, while DisEnt is the runner-up. Especially for the
0.5% setting, there is a considerable gap in performance between our and other methods.

For Corrupted CIFAR-10, the best-performing models are LfF and SiH. We observe that for higher
percentages of bias-conflicting samples, SiH is better than LfF, while for lower proportions, the
opposite is the case. DisEnt seems to be generally worse than the other debiasing methods. Finally,
Vanilla performs worse than the debiasing methods except for the 20% case. Thus, the debiasing
methods present an improvement over a standard empirical risk minimizer.

Focal loss vs. RDS weighting In Table 2, we show the performance on the unbiased test set of
Colored MNIST and Corrupted CIFAR-10 using two different ways of weighting the samples for
training the unbiased classifier. While SiH stands for our proposed method, in SiHRDS , we utilize
the RDS proposed by Nam et al. (2020) when reweighting the data points. The results suggest
that on average our proposed reweighting mechanism significantly increases performance while the
inclusion of the VAE leads to an accuracy-interpretability tradeoff. Additionally, the focal loss
reduces the variability in accuracy across multiple runs.
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Figure 2: A random collection of bias visualizations
for Colored MNIST. The randomly selected images are
varied over random seeds and the percentage of bias-
conflicting images in the training set.

Table 2: Unbiased accuracy + standard
deviation in % for Colored MNIST and
Corrupted CIFAR-10.

Dataset Ratio SiHRDS SiH

Colored
MNIST

20% 80.15 ± 5.27 85.24 ± 1.60
10% 86.13 ± 3.07 85.35 ± 1.23
5% 84.10 ± 3.03 86.14 ± 1.78
2% 79.38 ± 2.37 83.80 ± 1.28
1% 74.22 ± 3.21 80.03 ± 2.04

0.5% 64.17 ± 5.74 71.63 ± 2.49

Corrupted
CIFAR-10

20% 64.09 ± 5.64 66.75 ± 1.34
10% 56.89 ± 5.09 61.26 ± 2.06
5% 51.25 ± 4.10 55.63 ± 1.54
2% 38.22 ± 3.77 43.66 ± 1.81
1% 31.64 ± 2.50 35.17 ± 1.19

0.5% 24.59 ± 1.84 27.30 ± 2.04

Overall, the quantitative results show that the proposed reweighting scheme improves performance.
For settings where the easy-to-learn assumption is likely to be fulfilled, SiH shows promising results
compared to baselines. The ablation study shows that integrating our reweighting for the unbiased
classifier is critical in improving its accuracy.

4.2 QUALITATIVE EVALUATION

Figure 2 displays the bias visualization from DisEnt and SiH for a few randomly selected images.
Additionally, in Figure 7 of Appendix D, we show the random bias visualizations for Corrupted
CIFAR-10. We will not analyze the latter images further, as here, signal and bias are not disentangled
well enough for visualizing the bias for either method.

For Colored MNIST, the swapping of DisEnt perturbs the bias representations so strongly that this
also leads to an unwanted change in the digit. This change is likely due to the bias and signal
representations not being perfectly disentangled. Thus, the leftover signal in the bias dimensions
gets swapped too. On the other hand, SiH does not perturb the digit while regularly perturbing the
color. However, due to the weaker magnitude of change, our approach sometimes does not visibly
change the image.

SiH is more conservative when generating perturbations, which is advantageous for visualizing bias
in realistic cases where learned signal and bias embeddings are not perfectly disentangled. Although
our changes are more subtle, we believe that, for a practitioner, our perturbation method should be
preferred, as it does not induce artifacts, which otherwise have to be considered as a possible bias.

5 CONCLUSION AND FUTURE WORK

In the presence of bias, a classifier often leverages these spurious correlations rather than the un-
derlying signal. The application of such an algorithm can have adverse consequences in critical
situations. This work advances the research in building unbiased deep learning models by investi-
gating a novel reweighting scheme. We propose SiH, which trains a bias classifier to be as biased
as possible and simultaneously trains an unbiased classifier by upweighting samples for which the
biased decision rule fails to predict the correct labels. We show that the proposed weighting factor
based on the focal loss can match or outperform existing works. Additionally, by training a genera-
tive model, users are able to visualize and identify the bias at inference time. For this, the proposed
approach leverages latent adversarial perturbations that do not introduce undesirable artifacts.

Future work Although SiH has demonstrated its effectiveness on simple datasets, its efficacy on
more challenging datasets and other modalities requires further investigation. For this, it is cru-
cial to use more expressive generative models such as generative adversarial networks (Goodfellow
et al., 2020) or diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020).
Moreover, while SiH consists of established individual components, their combination is not rigor-
ously derived. In fact, the entire field would profit from greater mathematical rigor, beginning with
the establishment of a theoretical definition of what constitutes the “ease of learning”.
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A FURTHER RELATED WORK

Debiasing without explicit supervision To train an unbiased classifier, several existing ap-
proaches (Bahng et al., 2020; Clark et al., 2019; Wang et al., 2019; Cadène et al., 2019) leverage
some form of implicit knowledge about the bias present in the dataset. They use this insight to design
and train a model architecture susceptible to the specific bias attribute. They then train an unbiased
model to learn decision rules different from the biased model. For example, Bahng et al. (2020)
capture texture bias in image classification by training a convolutional neural network with a small
receptive field. Simultaneously, they train an unbiased model by forcing it to learn representations
that are independent of the biased ones.

Debiasing without implicit supervision Liu et al. (2021) slightly adapt the idea of Nam et al.
(2020). Instead of training both classifiers simultaneously, they divide the training into two stages.
First, the biased classifier is trained. Second, they train the unbiased classifier and upweigh all
samples that were misclassified by the biased classifier. Hence, they also try to focus on training on
the bias-conflicting samples.

DisEnt by Lee et al. (2021) builds upon Nam et al. (2020) by utilizing their training scheme to cre-
ate a disentangled representation useful for feature augmentation. As motivation, they show that
the diversity of training samples is an important factor in training. Instead of training the unbiased
classifier only on the sparse bias-conflicting samples, they try to synthesize additional samples for
which using the bias as decision rule does not work. Their algorithm works as follows: First, Lee
et al. (2021) train the base structure from Nam et al. (2020) using GCE and RDS to create disen-
tangled representations where signal and bias dimensions can be separated. After a predetermined
number of updates, they start to swap the bias dimensions of different samples to synthesize repre-
sentations with the same signal but different bias. Hence, making the bias unusable as decision rule
for the label because it originates from a different sample. They then train their classifiers on those
representations as well as on the original samples.

A caveat of Nam et al. (2020) is the absence of a mechanism for visualizing the unknown bias. For
this, Lee et al. (2021) propose to train a decoder ex-post to reconstruct the images given their latent
representations. By repeating their swapping process and reconstructing the images after the swap,
they expect to visualize the bias present in the dataset as they can compare reconstructions with the
same signal but swapped bias dimensions. This will work if the learned embeddings are perfectly
disentangled but might introduce artifact if they are not.

Further research for debiasing and visualizing the bias has been done by Darlow et al. (2020), which
leverage a vector quantized variational autoencoder (van den Oord et al., 2017) and add a simple bi-
ased classifier on top of the latent representations. After training, they perturb the latent dimensions
such that the biased classifier is as unsure as possible about the label. This perturbed representation
is then passed through the decoder to generate images without relevant bias. Consequently, a sec-
ond, unbiased classifier is trained on these images, which should not contain bias that can be used
for predicting the label.

B IMPLEMENTATION DETAILS

In line with previous works (Nam et al., 2020; Lee et al., 2021; Kim et al., 2021), we utilize an MLP
for Colored CMNIST for all methods. Each encoder consists of three linear layers with a bottleneck
of size 100 for signal and bias, respectively. The decoder is again consisting of three linear layers.
As activation function, we use the Rectified Linear Unit (ReLU). For the classifiers, we solely use
one linear layer for both datasets. This is because for us, the difficulty of a dataset is determined by
the complexity of the connection between latent variables and the realization x thereof. If we knew
the latent variables, inferring the label would be simple. Thus, a single linear layer suffices.

We adapt the encoder-decoder structure for Corrupted CIFAR-10 from an MLP to a CNN, where we
use a ResNet18 (He et al., 2016) with bottleneck dimension of 512 for the encoders of all methods
and a ResNet18-like decoder.

We do not perform any preprocessing for Colored MNIST. For the preprocessing of Corrupted
CIFAR-10, we take random crops consisting of at least 50% of the original image and resize them
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to the original 32 × 32 size. Additionally, we allow horizontal flips of the images and standard-
ize the pixel values over the entire dataset. To calculate the reconstruction loss, we transform the
standardized pixel values back into [0, 1] so that its size is comparable among all datasets.

To have visualizations that capture the original image well, for SiH, we upweigh the reconstruction
loss by the factor 100. Additionally, we rescale the reconstruction and KL term by dividing through
3L, where L is the number of pixels, to be invariant to image resolution and number of channels
while retaining their relative loss magnitude.

For updating the model weights, we use the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 0.001 and batch size of 256 for both datasets. The hyperparameter q is chosen to be 0.7 by
following the GCE coiners Zhang & Sabuncu (2018).

We perform early stopping and reduce the learning rate when plateauing by computing this loss
function on a held-out 10% of the training set. For Colored MNIST, we use an early stop patience
of 2 versus 20 for Corrupted CIFAR-10. The patience for the learning rate reduction is one-half of
the early stop patience and reduces the learning rate by a factor of 10.

We do not perform hyperparameter tuning on specific settings, as there must not be an unbiased or
bias labelled validation set in the setting of unknown bias. We would like to encourage future work
to do the same.

For creating visualization of the bias, we adapt Deepfool (Moosavi-Dezfooli et al., 2016) for our
purposes. Originally, the algorithm was developed for perturbing pixels in an input image, while we
use it for perturbing latent dimensions. Thus, while pixel values need to be clamped in [0, 1], we do
not require this. For the distance measure of the perturbation, we use the ℓ2−norm.

For the bias visualization, we use the trained model of SiH as backbone. This is vital in ensuring
that discrepancies in the visualizations of DisEnt and SiH can be attributed solely to the differing
visualization techniques. We perturb images for which the biased and unbiased classifiers predict
the correct class. With this, we aim to find bias-aligned images, which we can then perturb into
neutral images. We randomly sample a different target class and apply our perturbation. For DisEnt,
we pick a second image, for which the biased classifier predicts the same sampled target class and
swap the bias embeddings.

C DATASET VISUALIZATIONS

To compare the performance of our method SiH with previous works, we evaluate it on two datasets.
These datasets consist of a training set for which we define varying percentages of bias-conflicting
images to analyse the performance. We assess the debiasing potential of all methods on an unbiased
test set where signal and bias are independently and uniformly distributed. For SiH, we do not
perform hyperparameter tuning on each framework because an unbiased validation set does not
exist in the setting of unknown bias.

The first dataset is Colored MNIST by Kim et al. (2019), which consists of the popular handwritten
digit database MNIST (Lecun et al., 1998) synthetically infused with a color bias. To each digit, we
randomly assign distinct mean colors, which serve as bias attributes. Hence, the signal zs is the digit
while the easy-to-learn bias zb manifests itself as the color. In Figure 3, we display bias-aligned
images, for which leveraging the color as decision rule would lead to the correct label. A minority
of samples in the training set consists of bias-conflicting samples, showed in Figure 4, for which
the biased decision rule leads to the wrong prediction. Learning to recognize the digit instead of
the color is the only valid decision rule with which bias-aligned as well as bias-conflicting sam-
ples can be correctly classified. The second dataset we apply SiH to is the Corrupted CIFAR-10
dataset (Hendrycks & Dietterich, 2019). It is based on the standard CIFAR-10 dataset (Krizhevsky
& Hinton, 2009), injected with synthetically generated corruptions such as fog, brightness, or satu-
ration for each class. These synthetic biasing perturbations are designed to be as realistic as possible.
A collection of randomly selected bias-aligned and bias-conflicting images for both datasets can be
found in Figure 5 and Figure 6, respectively.
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Figure 3: Bias-aligned images of the Colored MNIST dataset. The columns show different digits zs
with their respective colors zb that predominantly manifest in combination.

Figure 4: Bias-conflicting images of the Colored MNIST dataset. The columns show different digits
zs with colors zb that are usually not observed together.

Figure 5: Bias-aligned images of the Corrupted CIFAR-10 dataset. The columns show the different
classes zs with their respective corruptions zb that predominantly manifest in combination. For
example, the class birds often has foggy images, while ships are frequently pixelated.
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Figure 6: Bias-conflicting images of the Corrupted CIFAR-10 dataset. The columns show the dif-
ferent classes zs with corruptions zb that are usually not observed together.

D BIAS VISUALIZATIONS FOR CORRUPTED CIFAR-10

Figure 7: A random collection of bias visualizations for Corrupted CIFAR-10. The randomly se-
lected images are varied over random seeds and the percentage of bias-conflicting images in the
training set.
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