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Supervisor: Prof. Dr. Julia E. Vogt

Advisors: Laura Manduchi, Ričards Marcinkevičs
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Abstract

Spurious correlations are everywhere. While humans often do not
perceive them, neural networks are notorious for learning unwanted
correlations instead of the underlying decision rule. This difference
brings rise to the problem of hidden bias, where a practitioner is un-
aware of the biased decision-making of its classifier. The deployment
of such a biased model in the real world, where the spurious corre-
lations might not hold anymore, would lead to unintended, adverse
consequences. This thesis proposes a debiasing method that advances
the research for alleviating this issue. We frame the problem in a proba-
bilistic setting and propose a method that does not fall for unwanted
spurious correlations. We use a variational autoencoder as our model’s
backbone and a theoretically founded reweighting scheme for training a
biased and unbiased classifier. Using the unbiased classifier, we match
or improve upon the state-of-the-art debiasing methods. Furthermore,
the presented algorithm does not rely on the presence of bias labels
for each individual in the training or validation set. Additionally, we
propose a latent adversarial perturbation for visualizing the bias that
helps practitioners become aware of the spurious attributes.
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Marcinkevičs for their oversight of this thesis. The weekly meetings
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Chapter 1

Introduction

There are no mistakes in life, just lessons. Unfortunately, in machine learning,
current models often fall prey to learning unwanted spurious correlations
while searching for dependencies between variables. In this thesis, we
embrace such mistakes by creating an algorithm that learns from its failures
to overcome this problem.

The learning of spurious correlations occurs because decision rules based
on them lead to satisfactory performance on the training data, despite the
fact that they do not embody the true underlying connections. This biased
way of making decisions is not robust and does not generalize well outside
the training distribution. Thus, there has been an emergence of research
that aims to mitigate this problem. Researchers make various assumptions
that help them identify the bias variable, which should not be used for the
decision rule. While many methods assume and leverage the presence of a
sample-specific bias variable, in this thesis, we do not make such a strong
assumption.

There are two main explanations why an individual bias variable might
not be present. First, it can be infeasible to label each data point due to
financial, time, or other constraints. Second, the undesirable variable might
be unknown. Therefore, it is not possible to label it. A classifier might utilize
this bias variable for making its prediction instead of using the desired signal,
that is, the reason a particular label is present in each image. This mistake
can happen if the bias is spuriously correlated with the label and is easier to
learn than the signal. This leads to the problem that a classifier that bases
its decision on the bias for predicting the label will perform reasonably well
on the data at hand but will not generalize well outside the training data
where the spurious correlation is not necessarily present anymore. To better
understand how such a situation might arise, let us study a setting that will
be the running example throughout this thesis.
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1. Introduction

Consider a data set consisting of histopathological whole-slide images (WSI)
with the goal of classifying whether a tumor is present in these images.
Further, most images where a tumor is present originate from hospital A and
most images without a tumor originate from hospital B. Here, the presence
or absence of a tumor is the signal, while the hospital from which the image
originates is the bias. This bias is easily detectable as hospitals do not have
the same machines. Hence, the images will look slightly different. For such a
data set, a classifier might learn how the images of each hospital differ instead
of learning how a tumor looks. Because predicting positive for hospital A
and negative for hospital B will result in a reasonably good performance
on the training data. Unfortunately, such a decision rule would have issues
classifying new samples for which this spurious correlation does not hold.
The practical application of such an algorithm in other hospitals would have
detrimental effects. In Subsection 6.4, we will analyze how well our method
helps mitigate this problem.

Previous works have focused on applicability in data sets with known but
unlabelled bias (Bahng et al., 2020; Clark et al., 2019; Nam et al., 2020; Liu
et al., 2021). To evaluate the performance, they use their knowledge about
the bias to create an unbiased test set and evaluate how much their method
improves the accuracy on it. A downside of this performance-optimizing
research is that they are often unable to or do not focus on visualizing the
bias. Recall that our setting arises either by insufficient resources to label the
bias for each image or by not knowing the bias. We believe that not being
able to label a known bias occurs substantially less often than not knowing
the bias because such ignorance can happen with each data set.

For evaluating their debiasing capabilities, previous methods rely solely on
an unbiased test set, which means they can not operate in the latter setting
of hidden bias as constructing such a data set requires knowledge of the bias.
In our previous example, if the biasing difference of hospitals is unknown, it
is difficult to evaluate whether an allegedly unbiased classifier is indeed not
using a bias. Here, it is important that a debiasing algorithm interpretably
visualizes with respect to which characteristic it became indifferent such that
a practitioner can decide whether this is indeed a bias. Otherwise, for an
adjusted data set where all hospital images look similar, i.e., there is no bias,
a standard debiasing technique might lead to a classifier that is invariant to
the signal as it mistakes it for the bias. Here, the algorithm would not be
able to recognize tumors after the debiasing procedure as this is the only
thing it can unlearn due to the absence of bias. Without interpretability, a
practitioner would not realize that by the application of a debiasing algorithm,
such a disaster happened. Additionally, previous works have tuned their
architecture and hyperparameters on each data set individually, which is
only possible in the presence of a bias-labeled validation set. We do not want
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1.1. Contributions

to make such an assumption in order to create a more generally applicable
method.

For the reasons mentioned above, this thesis aims to develop an algorithm
that not only trains an unbiased classifier but also interpretably visualizes the
uncovered bias and does not rely on architectural and hyperparameter tuning
on a bias-labeled validation set. We believe this will help uncover previously
unknown biases in existing data sets, which is not possible with previous
methods. The exaggerated aspiration of this thesis is that after having
constructed any data set, practitioners would apply our method to check
whether there are any biases they do not know of. After having visualized
the potential biases, they would better understand whether they need to
make adaptions without which a standard classifier would be unwillingly
biased.

1.1 Contributions

The key contribution of this thesis is developing a novel, interpretable debi-
asing method1. Within this work, the main contributions are as follows:

• Theoretical problem formalization including graphical model as well
as explicit formulating of assumptions

• Theoretically grounded reweighting scheme for training an unbiased
classifier

• Proposal of a method that does not require a bias-labeled validation
and test set

• Interpretably visualizing bias via innovative latent adversarial pertur-
bations

1.2 Organisation

The thesis is structured as follows:

1. Related Work: In Chapter 2, we introduce the reader to the solutions
other works propose for training an unbiased classifier in the presence
of spurious correlations. First, we provide an overview of methods
requiring an explicit bias label for each data point. Second, we present
works that, instead of individual bias labels, rely on leveraging knowl-
edge about the manifestation of the bias. Finally, we offer a closer look
at debiasing schemes solely relying on the finding that malignant bias
is easier to learn than signal.

1The code is publicly available at https://github.com/mvandenhi/

Interpretable-Debiasing.
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1. Introduction

2. Background for Variational Autoencoders: In Chapter 3, we give the
reader background information regarding the Variational Autoencoder.
This generative model will be the backbone of our method.

3. Interpretably Removing Hidden Bias: In Chapter 4, we present the
main body of work from this thesis. We commence by formalizing the
problem and discussing the assumptions that we make. Followingly, we
show our novel approach to create a theoretically founded interpretable
debiasing method.

4. Experiments: In Chapter 5, we acquaint the reader with the three
data sets we are using to evaluate our performance and detail how
we implement three different baselines. Additionally, we display the
different measures we take into account to assess performance.

5. Results: In Chapter 6, we present and visualize the results obtained
from the experiments for our method and the baselines.

6. Discussion: In Chapter 7, we discuss the innovations presented in this
thesis and support them with the results of our experiments. We argue
that previous works have neglected important aspects of the hidden
bias setting and show how our method fills these gaps.

7. Conclusion: In Chapter 8, we summarize the advances and findings
presented in this thesis and give an outlook on possible future work.
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Chapter 2

Related Work

In many data sets, a biasing variable is present, which we do not want to
use for the decision rule. For example, this problem can arise when we do
not want to discriminate against protected groups or if there is a spuriously
correlated covariate whose effect would not generalize outside the data set
distribution. In this chapter, we will outline how previous works have tackled
this problem of developing a decision rule that does not take the bias into
account.

The setting can be divided into two subcategories that require different
approaches. In Section 2.1, the presence of bias in each individual input is
captured by a discrete variable, which can be used during training to guide
the algorithm toward a bias-invariant decision rule. Conversely, in Section 2.2,
such an indicator is not given, and the method itself needs to recognize the
bias and find a decision rule that does not rely on it.

2.1 Debiasing with Explicit Knowledge about Bias

In this section, we assume that each data point is defined by a triple (x, b, y),
where b(x) ∈ B is an observed bias attribute that is spuriously correlated
with the input x and the label y ∈ Y . A standard empirical risk minimizer
predicting y from x will likely exploit the spurious correlation between the
m = |B| × |Y| groups for its prediction. The resulting predictor is unfair
towards groups for which this correlation does not hold. Additionally, even
if the correlation is not spurious, in some circumstances, it is discriminating
to make decisions based on the group affiliation of an individual. A famous
example is the COMPAS Recidivism Algorithm, which according to Angwin
et al. (2016), unfairly predicts a higher risk of recidivism for black defendants
due to their race. Here, y is the risk of recidivism, while b describes the
attribute race. While this specific finding is disputed (Flores et al., 2016;
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2. Related Work

Dressel and Farid, 2018), it is essential to develop measures to stop algorithms
from learning such unfair decision rules.

To tackle this problem, standard group distributionally robust optimization
(group DRO) aims to learn a model that minimizes the worst-case training
loss over the m groups (Namkoong and Duchi, 2016). Specifically, they try to
minimize the supremum of the training loss over all m groups, hopefully lead-
ing to a comparable performance in all groups. Even though this approach
generalizes well for the classic (underparameterized) setting, generalization
does not occur for certain groups in the overparameterized regime. This
difference arises because for underrepresented groups, the abundance of
parameters makes it easier to overfit on the scarce training data of these
groups than learning the underlying structure. Sagawa et al. (2020) improve
upon the existing literature on group DRO by combining overparameterized
group DRO models with strong regularizers such as early stopping and an
ℓ2 penalty. This regularization prevents the algorithm from overfitting and
leads to better worst-group generalization.

A different approach is to learn latent representations that contain as little
information as possible with respect to the bias attribute. For example, Li
and Vasconcelos (2019) try to create unbiased representations by adversarial
sample reweighting. They dynamically assign each training data point a
resampling weight through an optimization problem that tries to minimize
the degree of bias contained in the latent representations. With the same
goal in mind, several approaches try to achieve this by training an auxiliary
bias-predicting classifier (Edwards and Storkey, 2016; Beutel et al., 2017; Kim
et al., 2019). They use this classifier in an adversarial fashion to construct
representations from which said classifier is unable to predict the bias. Si-
multaneously, they train a standard label-predicting classifier with the same
latent variables, causing the representations to be informative with respect to
the label but uninformative with respect to the bias. Similarly, Zhang et al.
(2018) proof that the auxiliary classifier can be designed to enforce common
fairness metrics such as demographic parity, equality of odds, or equality of
opportunity as defined in Hardt et al. (2016).

Kearns et al. (2018) argue that any statistical notion of high-level fairness,
such as in Hardt et al. (2016), can have some downfalls when taking subgroup
conjunctions into account. For example, in a balanced data set, by predicting
positive for all rich whites and poor blacks, we achieve demographic parity
for the groups ”race” and ”wealth” separately, while this decision rule is
maximally unfair when considering any conjunction of both groups. To
solve this problem Creager et al. (2019) focus on the setting where the
choice of sensitive bias attributes is not specified when training their model.
After training, depending on the desired protected groups, they can easily
modify their flexibly fair representation to achieve demographic parity for
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2.2. Debiasing without Explicit Knowledge about Bias

the different subgroups. The idea is to learn disentangled latent variables,
some of which correspond to the sensitive attributes while others contain
non-sensitive attributes. Then, depending on which sensitive demographic
groups are chosen, a simple multilayer perceptron (MLP) can be trained on
the subset of the representations not corresponding to the protected groups.

2.2 Debiasing without Explicit Knowledge about Bias

In many situations, it is unfeasible or impossible to obtain an explicit bias
indicator for each sample. Hence, recent effort has been put into developing
methods that do not rely on observing the sensitive attribute. In order to still
mitigate the bias, different supportive assumptions about said variable are
being made. In Subsection 2.2.1, while there is no observed sample-specific
bias variable, the type of bias is implicitly known, such that a model can
be designed to specifically target its manifestation. On the other hand, in
Subsection 2.2.2, the assumptions made are broader as we do not require
implicit knowledge about the bias type and often focus on the easiness of
learning the bias compared to the signal (Nam et al., 2020).

2.2.1 Debiasing with Implicit Knowledge about Bias

Weinzaepfel and Rogez (2021) show that video action recognition models
are biased toward leveraging the scene rather than the action. For instance,
surfing is recognized by the waves of the sea rather than the surfer and surf-
board. Similarly, Geirhos et al. (2019) notice that ImageNet-trained classifiers
can exhibit a bias towards texture. While they use data augmentation to
mitigate the bias, methods in this subsection make use of the bias inclination
of such a classifier to train additional models that do not take the bias into
account. While these methods do not require knowledge regarding the bias
manifestation for each data point, they assume an understanding of the bias
in order to design bias-capturing architectures. We term this understanding
as implicit knowledge about the bias.

Bahng et al. (2020) do not rely on explicit knowledge about the bias and
instead define a set of models designed to be biased towards the implicitly
known bias attribute. For example, in the presence of texture bias, they use
convolutional neural networks (CNN) with a small receptive field. Hence,
they are more prone to focus on small-scale patterns such as texture. Simul-
taneously, they train a second classifier, which they optimize in a manner
that learns to be invariant with respect to the biased classifier’s decision rule.
In the end, they keep the second, bias-invariant classifier to make unbiased
predictions.

Clark et al. (2019) split the training into two parts. First, they train the biased
classifier. Second, they train an unbiased classifier by combining its prediction
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2. Related Work

with the prediction of the frozen biased classifier. As this combined model
is already using the bias for making predictions, they expect the unbiased
classifier to pick up on alternative, unbiased decision rules during training.
For evaluation, they then only use the unbiased classifier.

Lastly, Wang et al. (2019) focus on resolving texture bias. They introduce a
differentiable neural network building block specifically designed to extract
textural information from images. They first train this network to capture
the texture. Then, they train a second model by projecting its latent variables
onto a subspace that is orthogonal to the representations of the first network.
Hence, encouraging a decision rule that does not make use of the implicit
textural bias attribute.

2.2.2 Debiasing without Implicit Knowledge about Bias

While papers from Section 2.1 and Subsection 2.2.1 focus on leveraging some
kind of knowledge about the bias present in the data set, here we utilize
more general properties of bias. As the method introduced in our thesis
operates in this setting too, we will present a closer look at what comparable
works have done, starting with Nam et al. (2020) who introduced it.

Nam et al. (2020) argue that bias can be split into benign and malignant. A
benign bias does not influence a classifier’s performance because it is more
complicated to learn than the true, underlying decision rule. On the other
hand, malignant bias is learned first as it is easier to learn than the target
attribute. Hence, the authors develop a training scheme coined ”Debiasing by
Learning from Failure (LfF)” for disregarding malignant bias when training
a classifier. The idea is similar to those in the previous subsection: Train
a biased classifier to be as biased as possible and simultaneously train an
unbiased classifier on samples for which the biased classifier performs poorly.
We will call samples bias-aligned if utilizing the bias as decision rule leads
to the correct label. Otherwise, we will call them bias-conflicting. Hence,
the goal is to train the biased classifier and use it to differentiate between
bias-aligned and bias-conflicting samples such that we can upweigh bias-
conflicting samples for the unbiased classifier. To emphasize bias-aligned
samples for the biased classifier, they deviate from the standard cross entropy
loss (CE) and instead utilize the generalized cross entropy loss (GCE) by
Zhang and Sabuncu (2018):

GCE(ŷb, y) =
1 − ŷq

b
q

, (2.1)

where ŷb is the predicted probability of the correct label y according to the
biased classifier and q ∈ (0, 1] is a hyperparameter to control the strength of

8



2.2. Debiasing without Explicit Knowledge about Bias

emphasis. The GCE is best understood by inspecting its derivative

∂GCE(ŷb, y)
∂θb

= ŷq
b

∂CE(ŷb, y)
∂θb

, (2.2)

where θb are the optimizable neural network parameters. This loss makes
use of their finding that malignant bias is learned first, as it puts more weight
on samples that the biased classifier already predicts well, which will be the
bias-aligned samples. Conversely, for training the unbiased classifier, they
weigh each sample by the relative difficulty score (RDS)

RDS(ŷs, ŷb, y) =
CE(ŷb, y)

CE(ŷs, y) + CE(ŷb, y)
, (2.3)

where ŷs is the predicted probability of the correct label y according to the
unbiased signal classifier. Intuitively, the RDS downweighs samples that the
biased classifier predicts well. Hence, making the unbiased classifier focus
on bias-conflicting samples.

In practice, before calculating the RDS, Nam et al. (2020) apply an exponential
moving average on the CEs followed by a class-wise normalization where
for each class, they divide by the class-wise maximum CE of the whole
data set. Our experiments suggest that this maximum-normalization plays
a significant role during training. Thus, developing a weighting scheme
that more directly improves performance would be desirable. Although not
explicitly mentioned, during their hyperparameter tuning, they assumed the
presence of a validation set for which the bias is explicitly known for each
sample. This implicit assumption can be deduced from the training details,
where the fixed number of training epochs varies between different data sets.
Additionally, Nam et al. (2020) ”acknowledge that assessing the reduction of
potential risks by the proposed scheme can be a challenge without specifically
identifying the biases,” which motivates the interpretable approach presented
in this thesis.

Liu et al. (2021) slightly adapt the idea of Nam et al. (2020). Instead of
training both classifiers simultaneously, they divide the training into two
stages. First, the biased classifier is trained. Second, they train the unbiased
classifier and upweigh all samples that were misclassified by the biased
classifier. Hence, they also try to focus on training on the bias-conflicting
samples. Notably, they are the only authors in this setting that transparently
talk about the problem of hyperparameter tuning, which we will discuss as
well in Section 7.1. For their experiments, they tune their hyperparameters
by assuming the presence of a bias-labeled validation set.

DisEnt by Lee et al. (2021) builds upon Nam et al. (2020) by utilizing their
training scheme to create a disentangled representation useful for feature
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2. Related Work

augmentation. As motivation, they show that the diversity of training sam-
ples is an important factor in training. Instead of training the unbiased
classifier only on the sparse bias-conflicting samples, they try to synthe-
size additional samples for which using the bias as decision rule does not
work. Their algorithm works as follows: First Lee et al. (2021) train the base
structure from Nam et al. (2020) using GCE and RDS to create disentangled
representations where signal and bias dimensions can be separated. After a
predetermined number of updates, they start to swap the bias dimensions
of different samples to synthesize representations with the same signal but
different bias. Hence, making the bias unusable as decision rule for the label
because it originates from a different sample. They then train their classifiers
on those representations as well as on the original samples.

A caveat of Lee et al. (2021) is that for the swapping to have an influence,
the classifiers need to take signal as well as bias dimensions into account for
their prediction. While for truly disentangled representations, the biased and
unbiased classifiers should consider bias and signal dimensions separately.
Additionally, this method increases the number of hyperparameters as it
has more losses induced by the swapping. In the absence of a bias-labeled
validation set, this would complicate matters. The authors implicitly make
the assumption that such a validation set is present, as their hyperparameters
differ for each data set configuration.

To improve upon the non-interpretability of Nam et al. (2020), Lee et al. (2021)
propose to train a decoder ex-post to reconstruct the images given their latent
representations. By repeating their swapping process and reconstructing the
images after the swap, they expect to visualize the bias present in the data
set as they can compare reconstructions with the same signal but swapped
bias dimensions. While this is a step in the right direction, by training the
decoder ex-post, they can not update the representations, which might not
contain all relevant information necessary to reconstruct the image because
the representations were optimized for classification. Also, by swapping the
bias dimensions and then reconstructing, all residual information about the
image that is present in the bias dimension gets swapped too. This thesis
will present a more sophisticated approach for interpretably identifying the
bias.

Kim et al. (2021) tackle the problem of interpretability as well. Similar to
Liu et al. (2021), they train the biased classifier first. Then, they try to split
the training set into bias-aligned and bias-conflicting images according to
how well the biased classifier can predict the label. With this estimated split,
they make use of the SwapAE (Park et al., 2020). This autoencoder takes two
images as input. As output, it generates an image that maintains the first
image’s content and applies the second image’s style. Thus, Kim et al. (2021)
input a bias-aligned and a bias-conflicting image to generate a new image
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2.2. Debiasing without Explicit Knowledge about Bias

containing the bias-irrelevant features from the first and the bias-relevant
features from the second image. To ensure that the SwapAE captures the
bias-relevant features of the bias-conflicting image, they make it focus on
the patches of the images that the biased classifier uses for its prediction as
determined by its class activation map (Zhou et al., 2016). With this feature
augmentation technique, they pursue the same goal as Lee et al. (2021), that
is, to create more diverse bias-conflicting images. Finally, these new images
are used to train their unbiased classifier. By using the class activation map,
the technique of Kim et al. (2021) operates in the pixel space. While this
is adequate for the data sets they used, it is unclear whether this approach
generalizes to other biases. Additionally, by using the SwapAE, they assume
that the content of an image is the signal while the bias is the image style.
This assumption might not be fulfilled in all applications.

Lastly, Darlow et al. (2020) also aim to generate new diverse bias-conflicting
images. They leverage a vector quantized variational autoencoder (van den
Oord et al., 2017) and add a simple biased classifier on top of the latent
representations. After training, they perturb the latent dimensions such that
the biased classifier is as unsure as possible about the label. This procedure
leads to a representation for which a classifier that looks at only the bias can
not make a confident prediction. Hence, there is no bias present that could be
used for a prediction. This perturbed representation is then passed through
the decoder to generate images without relevant bias. Consequently, a second,
unbiased classifier is trained on these images, which should not contain bias
that can be used for predicting the label. A word of warning to the interested
reader: While the results of Darlow et al. (2020) seem groundbreaking, they
are achieved by utilizing a much more advanced neural network structure,
such that the results are not directly comparable to the other works.

To summarize, with LfF, Nam et al. (2020) introduce the field of debiasing
without knowledge about the bias and leverage their finding that malignant
bias is easier to learn than the underlying signal attribute. Through the
GCE, they train a biased classifier. Simultaneously they train an unbiased
classifier by upweighting bias-conflicting samples through the RDS such that
the classifier focuses on samples for which the bias leads to no valid decision
rule. DisEnt by Lee et al. (2021) builds on top of LfF by swapping the latent
bias vectors of different images while keeping the signal. These augmented,
bias-conflicting representations are then passed to the unbiased classifier.
With this procedure, the unbiased classifier becomes invariant to the bias.
Following the augmentation idea of DisEnt, Kim et al. (2021) try to augment
the training data by leveraging the SwapAE (Park et al., 2020) where they
create images with similar signal but different biases. To identify the bias in
an image, they leverage the class activation map (Zhou et al., 2016) of the
biased classifier. Finally, Darlow et al. (2020) try to augment the training data
by training a vector quantized variational autoencoder (van den Oord et al.,
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2. Related Work

2017), adversarially perturbing the latent dimensions according to the biased
classifier and reconstructing these debiased images.
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Chapter 3

Background on Variational
Autoencoders

This segment intends to familiarize the reader with the Variational Autoen-
coder (VAE) developed by Kingma and Welling (2014), which is the backbone
of our method. We want to explicitly state that this is not our work and
that we are merely summarizing the work of Kingma and Welling (2014) in
this chapter. Nevertheless, in Subsection 4.2.1, among other things, we will
present how we adapt their work to be applicable in our context.

The goal of a VAE is to learn the underlying data distribution of a given data
set. By data distribution we mean a combination of latent variables we will
denote by z, which manifest themselves in observable attributes x described
by p(x|z). For example, z could have the values plane and sky, for which
x would describe the union of all pixels values from an image in which a
human would recognize a flying aircraft. When training a machine learning
model, it is desirable that it perceives its input x not as a concatenation of
pixel values but instead understands the underlying concepts of the image.
This is exactly what the VAE achieves by learning the data-generating latent
representations. Access to this data distribution enables one to utilize it for a
multitude of applications, such as generating new samples, detecting outliers,
or label prediction.

A VAE is a probabilistic generative model that allows one to take the inherent
variability of a data set into account. They are trained by maximizing a lower
bound for the likelihood of the data, denoted by p(x), which is sometimes
called evidence. Specifically, they are maximizing the Evidence Lower Bound
(ELBO):

log[p(x)] ≥ Eq(z|x)
[
log[p(x|z)]

]
− DKL

[
q(z|x)||p(z)

]
, (3.1)
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3. Background on Variational Autoencoders

where p denotes the data’s true distribution while q represents an approxi-
mation thereof and DKL refers to the Kullback–Leibler divergence (Kullback
and Leibler, 1951). For a detailed derivation, we refer to Appendix A.

In order to maximize the ELBO, one usually parametrizes p(x|z), as well as
q(z|x) by a neural network (NN) that outputs the parameters of the defined
distributions. Some simplifying assumptions are made on the covariance
matrix to reduce the complexity. Conversely, p(z) is parametrized by a
distribution with fixed parameters as it is independent of the data at hand.
A simplified illustration of a VAE can be found in Figure 3.1.

Figure 3.1: Graphical depiction of the structure of a Variational Autoencoder. The input x is
passed through an encoder E that predicts the parameters of the approximate posterior q(z|x).
We then sample from this distribution to obtain z, which is constrained to be in the vicinity of
the prior p(z) by the ELBO. Lastly, z is passed through the decoder D that predicts x̂, which is
the mean of p(x|z) to reconstruct x as well as possible.

Training a VAE is a two-step process, as is the case with most NN. In the first
step, the input x is passed through an encoder E to predict the parameters
of the approximate posterior q(z|x). Usually, q(z|x) is assumed to be a
multivariate normal distribution with diagonal covariance matrix. Here, the
encoder predicts the mean and variance of q(z|x). Then, a latent vector z is
sampled from this multivariate normal distribution. z is then passed through
the decoder D to recover the original input x as well as possible. Normally,
this is done by predicting the means of p(x|z), usually assumed to be a
multivariate normal distribution with a fixed diagonal covariance matrix.

Having access to all distributions required in the ELBO, in the second step,
the weights of the neural networks are updated to increase the ELBO of the
datum. This updating is done by gradient ascent or variants of it, which
essentially looks at the derivative of the ELBO with respect to each weight and
adjusts the weight in the direction of increasing the ELBO. Such a procedure
requires that it is possible to compute gradients of the randomly sampled z
with respect to the parameters of the normal distribution q(z|x).

Naively, it is not possible to calculate the derivative of a realization with
respect to its distributional parameters. Kingma and Welling (2014) propose
the reparameterization trick that makes use of the fact that for z ∼ N (µ, σ2)
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we have that z = µ + σε for ε ∼ N (0, 1). Thus, they sample from a standard
normal distribution and linearly transform this sample by the predicted
parameters to obtain z. This reparameterization makes it possible to take the
derivative of z with respect to the parameters, as they are connected by a
linear transformation.

Intuitively, the second term of the ELBO formulation in Expression 3.1 works
as a regularizer and tries to bunch all latent points together. Adversely, the
first term, often referred to as reconstruction loss, has the goal of recon-
structing the original input as well as possible, which requires the latent
representation to be informative. The clash of both losses creates a regular-
ized latent space that reduces the dimensionality of the data while preserving
informativeness with respect to the data. This informative reduction is
achieved by structuring the information and variability of x in the latent
representation z.
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Chapter 4

Interpretably Removing Hidden Bias

This chapter presents the main body of work from this thesis. First, in
Section 4.1, we introduce the framework in which our model is expected to
operate. Then, following the theoretical foundation, in Section 4.2, we set
forth our interpretable method to train an unbiased classifier.

4.1 Problem Formalization

Before presenting our method in the next section, we will define the frame-
work of the proposed approach by highlighting the underlying assumptions.
In doing so, we hope to shed light on the situations in which our or related
methods should be applied. Our theoretical framework improves upon the
existing literature, which focuses more on the applied side of the problem.
First, in Subsection 4.1.1, we define the graphical model, which we assume
to be the underlying data generating mechanism for data sets on which our
debiasing method is applicable. Afterward, in Subsection 4.1.2, we explicitly
state the assumptions we require to enable the debiasing capabilities of our
model.

4.1.1 Graphical Model

Consider a data set with observed features x and observed label y. Here, we
discuss by what unobserved data generating mechanism p(x, y) we expect
the data to have been generated such that an empirical risk minimizer might
accidentally learn the bias. While works discussed in Section 2.1 assume
the presence of a sample-specific bias indicator b, we do not require the bias
attribute to be observed. Instead, we allow it to be an unobserved latent set of
variables and denote it as zb. Additionally to the latent bias variables zb, we
necessarily require the existence of a latent set of signal variables zs, which
are the variables responsible for the observed label y and should be leveraged
for learning the underlying decision rule. The input x is generated by a
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4. Interpretably Removing Hidden Bias

combination of both latent variables zb and zs. The connection from zb to x
allows the classifier to exploit the bias zb for its decision rule. The connection
from zs to x allows our method to learn an unbiased classifier that focuses on
zs instead of zb when looking at the input x. With the desiderata at hand, a
classifier would have no intention of learning zb as it has no predictive value
for y. Hence, we introduce the unobserved binary sample selection variable
r. This variable can be thought of as a rejection sampler depending on zs
and zb that decides whether a given data point will be observed at all. We
present the full graphical model in Figure 4.1.

x

zs y

zb

r

Figure 4.1: Graphical model for the setting in which our method is expected to operate. Grey
nodes are observed variables, while white nodes are unobserved. Black arrows signify a causal
relationship, while the red dashed arrow indicates a spurious correlation when conditioning on r.

The binary variable r is the key component of the graphical model, which is
the reason why a training set is biased and gives rise to the biased classifier.
If r = 1, then a given data point is observed and included in the data set.
Accordingly, r = 0 means this constellation of variables was not observed
and hence can not be included in the data set. This implies that by training a
classifier with a training set following this graphical model, we are implicitly
conditioning on the variable r, as we are only training on data points that
have been observed. We call a sample bias-aligned, if it has a combination of
zs and zb such that p(r = 1|zs, zb) is high. Conversely, if p(r = 1|zs, zb) is
low, such a sample is called bias-conflicting. Therefore, while neither r = 1
deterministically implies bias-aligned nor vice versa, the two often coincide.
This concurrence leads to a training set with many bias-aligned images that
give rise to a classifier using the biased decision rule.

Through the conditioning on r, which is done implicitly by using the training
set, an indirect dependence from zb to zs and consequently to y emerges. This
spurious connection is the reason why zb can be used as a biased decision
rule that still gives high accuracy for classifying y. In a data set following this
graphical model, bias-aligned samples are more prevalent than if there was
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4.1. Problem Formalization

no variable r in the graphical model. This means that certain combinations
of zs and zb will appear more. Thus, a classifier can learn to recognize bias
zb and through this infer the signal zs and label y, which will be a correct
conclusion for the many bias-aligned samples in the data set. Nevertheless,
as previously mentioned, applying such a classifier in an environment where
the connection through r no longer holds can have detrimental effects. This
is why we want to train an unbiased classifier that directly recognizes zs.
Because understanding the variable r is vital, we study it in the context of
our running example to clarify potential uncertainties.

Recall the running example from Chapter 1, in which hospital A produces
mostly tumorous images while hospital B has many tumor-free images. A
classifier might learn to differentiate hospitals, instead of the manifestation
of a tumor, for predicting the presence of a tumor. Thus, zb describes the
different hospitals, while zs represents the presence or absence of a tumor.
Here, r describes the fact that bias-aligned samples with zs = tumor and
zb = hospitalA are observed a number of times, as p(r = 1|zs = tumor, zb =
hospitalA) is high. This increased probability of observing both attributes
together might arise due to hospital A being specialized in tumors. As such,
patients with tumors from other hospitals are sent there for in-depth analysis.
Still, predicting that each patient from this hospital has a tumor is not a
sensible decision rule, which is what the method presented in this thesis tries
to prevent.

4.1.2 Assumptions

Knowing what assumptions are implicitly made when applying a method
is often overlooked. Even though this knowledge is vital for understanding
the framework and interpretation of results. In an effort towards more
transparency, we will introduce the assumptions that are made when our
model is used and what the effects are if these are not fulfilled.

1. Graphical model holds: The most important assumption made is that
the graphical model specified in Subsection 4.1.1 describes the underly-
ing data generating mechanism. Similar to one of the assumptions of
linear regression, which states that the model is correctly specified, this
is a hypothesis that, for any practical data set, is not testable. One has
to accept the aphorism by Box (1979) that states ”all models are wrong,
but some are useful.” By this, we mean that if the graphical model is a
reasonably good description of the underlying data-generating process,
then it can be expected that our method will perform reasonably well.

2. Bias is easier to learn than signal: In order to establish an environment
where a debiasing method is necessary, we introduce the assumption
that for a standard classifier, learning the biased decision rule is easier
than the underlying signal-based decision rule. As neural networks
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prefer to learn simple patterns first (Arpit et al., 2017), this assumption
makes it such that a standard classifier latches onto the easy-to-learn
bias instead of the signal. Without this assumption, a standard classifier
might learn the signal, which would preclude the need for a debiasing
technique. We subdivide this assumption into three parts.

a) In order for the bias to be easier to learn than the signal, we
assume that the relationship from x to y through zb is easier to
capture than through zs.

b) Additionally, we require for bias-aligned samples that the biased
decision rule contains the same predictive power as if utilizing
the signal. This means that for bias-aligned samples p(y|zs) =
p(y|zb) ∀x.

c) Lastly, we assume that there are enough bias-aligned samples such
that the easiness of learning the relationship of x and y through zb
is not outweighed by the fact that this decision rule does not work
for the bias-conflicting samples.

Combined, these three subassumptions indicate that a standard classi-
fier will focus on learning the bias rather than the signal for its decision
rule, as it prefers simple, biased patterns as long as it is not losing its
predictive power for the bulk of samples.

3. Presence of bias-conflicting samples: While most of the data set con-
sists of samples for which utilizing the bias will result in the correct
label, we require the presence of data points for which this decision
rule does not lead to the correct solution. The reason for this is twofold.
First, without this assumption, both decision rules, based on either
bias or signal, would be valid as they predict the label as well as
possible. Hence, it is ambiguous which is the correct solution. Sec-
ond, the method we present in Section 4.2 operates by upweighting
bias-conflicting samples, which is not possible if none exist.

If any of these assumptions do not hold, then the biased classifier we intro-
duce in Subsection 4.2.1 will not be able to learn the bias. Consequently, we
would not be able to train an unbiased classifier, and our method would not
work. As usual, it is not possible to check all of our assumptions a priori. We
hope that by our interpretable visualizations presented in Subsection 4.2.2,
a practitioner can assess a posteriori whether any assumptions are violated.
For example, by visualizing what the model believes is the manifestation of
the bias, it is possible to determine whether there exists any easy-to-learn
bias at all in the data set.
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4.2. Method

4.2 Method

In the following subsections, we present the method developed in this thesis,
which aims to alleviate the problem of hidden bias in a data set corresponding
to the setting outlined in Section 4.1. In Chapter 3, we acquainted the reader
with the Variational Autoencoder, which will be the backbone for creating
interpretable visualizations of the bias. In order to visualize said bias, we
need to disentangle it from the signal. Therefore, we present our two-model
reweighting structure to single out the bias in Subsection 4.2.1. During
the disentangling of signal from bias, we will simultaneously create an
unbiased signal classifier that does not take the bias into account for its
predictions. Then, in Subsection 4.2.2, we introduce the algorithm we use for
interpretably visualizing the bias from our given model structure. Finally,
in Subsection 4.2.3, we present the specifications we use for running our
method, with the aim of having a structure that does not need any tuning on
a specific data set.

4.2.1 Biased and Unbiased Classifier

The original VAE (Kingma and Welling, 2014) was designed for unsupervised
learning. In this thesis, we extend the VAE to include the reweighting struc-
ture of LfF (Nam et al., 2020). This extension results in a supervised method
that contains an unbiased classifier as well as an interpretable visualization
mechanism. We choose a VAE over other generative models for its math-
ematically founded ELBO, allowing us to encode our graphical model in
the loss. In turn, this decreases the number of hyperparameters because the
ELBO determines the relative weight of the losses. Lee et al. (2021) suggested
training the decoder D on the latent embedding only after having trained
the unbiased classifier and having fixed the weights of the encoder E. We
believe such training needs to happen simultaneously. Otherwise, if the
encoding of the latent dimensions is only trained to optimize the classifier’s
performance, they will not contain information irrelevant to the label but
relevant to the image. This would make the reconstruction of the original
image a challenging task.

We will now step-by-step integrate the assumptions made in Subsection 4.1.2
into the ELBO for deriving a loss function for our VAE. First, we integrate
Assumption 1 and adapt the VAE to the structure of our graphical model
outlined in Subsection 4.1.1 for which we take inspiration from Kingma
et al. (2014). The key difference to the original ELBO is the inclusion of the
observed label y as well as having separate latent variables zs and zb.
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4. Interpretably Removing Hidden Bias

log[p(x, y)] =
∫∫

q(zs, zb|x, y)log[p(x, y)]dzsdzb

=
∫∫

q(zs, zb|x, y)log
[ p(x, y, zs, zb)

p(zs, zb|x, y)
q(zs, zb|x, y)
q(zs, zb|x, y)

]
dzsdzb

=
∫∫

q(zs, zb|x, y)log
[ q(zs, zb|x, y)

p(zs, zb|x, y)

]
dzsdzb

+
∫∫

q(zs, zb|x, y)log
[ p(x, y, zs, zb)

q(zs, zb|x, y)

]
dzsdzb

log[p(x, y)] ≥
∫∫

q(zs, zb|x, y)log
[ p(x, y, zs, zb)

q(zs, zb|x, y)

]
dzsdzb

=
∫∫

q(zs, zb|x, y)log
[ p(x, y|zs, zb)p(zs, zb)

q(zs, zb|x, y)

]
dzsdzb

=
∫∫

q(zs, zb|x, y)log[p(x, y|zs, zb)]dzsdzb

−
∫∫

q(zs, zb|x, y)log
[ q(zs, zb|x, y)

p(zs, zb)

]
dzsdzb

=
∫∫

q(zs, zb|x, y)log[p(y|zs)p(x|zs, zb)]dzsdzb

−
∫∫

q(zs, zb|x, y)log
[ q(zs|x)q(zb|x)

p(zs)p(zb)

]
dzsdzb

= Eq(zs ,zb |x)
[
log[p(x|zs, zb)]

]
− DKL

[
q(zs|x)q(zb|x)||p(zs)p(zb)

]
+ Eq(zs ,zb |x)

[
log[p(y|zs)]

]

(4.1)

Starting from the original ELBO derivation in Appendix A, in Expression 4.1
we expand the observed variables to be x and y as well as separating z into
zs and zb. We then insert Assumption 1 about our graphical model in the
penultimate line of Expression 4.1. Note that the first two terms of the final
inequality are similar to the original ELBO. The difference is only the division
of z into zs and zb. While the last term is introducing a classifier that takes
the latent signal attributes as input and predicts the label from them. We
do not include learning the unobserved variable r and treat it as a nuisance
parameter. Learning this parameter is as hard as learning the disentangled
zs and zb because its value is determined through their separate realizations
that need to be learned. Therefore trying to learn it explicitly grants no
additional benefit to our current setup.

So far, this ELBO only justifies using a single classifier on the signal dimen-
sions. We will now integrate the easy-to-learn Assumption 2 to account for
the fact that a simple classifier would learn the bias instead of the signal in
its latent dimensions. Nam et al. (2020) have shown that training with a bias
and a signal classifier helps disentangle the latent representations, which is
what we will incorporate in the ELBO.
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4.2. Method

Recall the easy-to-learn Subassumption 2b, which states that for bias-aligned
samples it holds that p(y|zs) = p(y|zb) ∀x and consequently log[p(y|zs)] =
log[p(y|zb)] ∀x. Note that this equation only holds for the true data-generating
latent set of variables and not necessarily for the estimated embeddings of our
encoder. The samples for which a biased classifier can predict the label well
are the ones that are bias-aligned. To measure this, we introduce the variable
ŷb, the predicted probability of the correct label y by a biased classifier. ŷb is
proportional to the bias alignedness of a sample as it captures how well the
bias can be leveraged for inferring the signal and the derived label. We use
this to get

ŷblog[p(y|zs)] ≈ ŷblog[p(y|zb)] ∀x. (4.2)

For bias-aligned samples, a biased classifier can predict y using zb, and we
have ŷb → 1. This implies log[p(y|zs)] ≈ log[p(y|zb)], which holds as it
fulfills the original easy-to-learn assumption. Conversely, for bias-conflicting
samples, a biased classifier predicts the wrong class, and we have that ŷb → 0.
Thus, we arrive at 0 ≈ 0, which also holds.

We integrate this finding in the ELBO of Expression 4.1

log[p(x, y)] ≥ Eq(zs ,zb |x)
[
log[p(x|zs, zb)]

]
− DKL

[
q(zs|x)q(zb|x)||p(zs)p(zb)

]
+ Eq(zs ,zb |x)

[
log[p(y|zs)]

]
= Eq(zs ,zb |x)

[
log[p(x|zs, zb)]

]
− DKL

[
q(zs|x)q(zb|x)||p(zs)p(zb)

]
+ Eq(zs ,zb |x)

[
(1 − ŷb + ŷb)log[p(y|zs)]

]
≈ Eq(zs ,zb |x)

[
log[p(x|zs, zb)]

]
− DKL

[
q(zs|x)q(zb|x)||p(zs)p(zb)

]
+ Eq(zs ,zb |x)

[
(1 − ŷb)log[p(y|zs)] + ŷblog[p(y|zb)]

]
,

(4.3)

where we have inserted Expression 4.2 in the last line. In the last term of the
final inequality, we recover a particular case of the Generalized Cross Entropy
Loss (Zhang and Sabuncu, 2018) used by Nam et al. (2020). According to
them, the classifier p(y|zb) trained with this loss will become biased as a
result of upweighting biased samples. Therefore, we can leverage this biased
classifier for calculating ŷb. As this biased classifier is trained simultaneously
with the weighting of the samples, it will not be perfectly biased. Additionally,
ŷb is merely an approximation of bias alignedness. To account for this, we
relativize its prediction by the hyperparameter q ∈ (0, 1] and have fully
recovered the GCE loss. The final ELBO we will be optimizing is as follows:

log[p(x, y)] ≥ Eq(zs,zb|x)
[
log[p(x|zs, zb)]

]
− DKL

[
q(zs|x)q(zb|x)||p(zs)p(zb)

]
+ Eq(zs,zb|x)

[
(1 − ŷb)

qlog[p(y|zs)] + ŷq
blog[p(y|zb)]

]
(4.4)
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The reasoning mentioned beforehand serves the purpose of justifying and
integrating a bias classifier into the model structure. Otherwise, following
the graphical model, one would expect solely a signal classifier, which does
not allow for disentangling the latent space. Thus, there is a need for mathe-
matically integrating the easy-to-learn assumption, which gives rise to the
need for debiasing. We want to transparently state a critical point of the
derivations such that future work can improve upon our considerations:
The assumption underlying approximate Equality 4.2 holds for all x, which
implies that it holds over the true posterior p(zs, zb|x). However, Expres-
sion 4.3 inserts the approximate Equality 4.2 inside of a double integral over
approximate posterior q(zs, zb|x). The problem is that q(zs, zb|x) is merely
an approximation of p(zs, zb|x) and therefore they might differ. Especially
during training, q(zs, zb|x) might be far apart from the true posterior.

Having derived the ELBO for our graphical model, in Figure 4.2, we depict
the model structure proposed in this thesis that integrates this optimizable
expression. By introducing the easy-to-learn assumption into the ELBO,
we have theoretically justified the use of a bias classifier Cb additionally to
the unbiased signal classifier Cs. The purpose of having two classifiers is
to disentangle the latent bias and signal representations. While Nam et al.
(2020) train the signal classifier by utilizing their relative difficulty score,
we derive a much simpler reweighting scheme using (1 − ŷb)

q. This weight
resembles the focal loss introduced by Lin et al. (2017), with the difference
that they do not use one model’s prediction for weighting another model
but work only with one model. Thus, they also backpropagate with respect
to the reweighting while we detach this factor to not mix the gradients of
both classifiers. Lin et al. (2017) show that the focal loss focuses training on
hard examples. To be specific to our setting, it focuses on data points that are
hard for the biased classifier. Training two classifiers simultaneously while
weighting training samples differently is key to disentangling the signal and
bias contained in the image.

The bias classifier Cb focuses on learning easy samples since the Generalized
Cross Entropy Loss upweighs samples that are already being classified well.
Due to Assumption 2, these are likely to be the bias-aligned samples causing
Cb to learn the bias attributes zb. Opposed to this, the signal classifier focuses
on samples that are not being predicted well by a bias classifier that focuses
on easy-to-learn samples. These are likely to be bias-conflicting data points
for which the biased decision rule does not work. Consequently, Cs will learn
the signal zs as for these samples utilizing zb does not lead to the correct
prediction. This reweighting scheme explains the necessity of Assumption 3
because there would not be any data from which the signal classifier can
learn in the absence of bias-conflicting samples.
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Figure 4.2: Graphical overview of our proposed model structure. The input x is passed through
the signal and bias encoders Es & Eb to obtain the latent signal and bias embeddings zs & zb.
These representations are then passed through their respective classifier Cs & Cb to predict the
probability of the correct class of y by ŷs & ŷb. Lastly, the latent attributes are concatenated and
passed through the decoder D to reconstruct the original image x as well as possible by x̂.

The decoder supports the classifiers in condensing the information contained
in the input and makes the learning of the latent attributes easier. Further-
more, it helps find potentially challenging parts of the signal as it requires
the model to learn all aspects of an image. Additionally, it prevents Es from
focusing on learning bias too, because, to reconstruct the image, the signal
attributes must be learned somewhere. Through this model structure, we
obtain a disentangled latent space as well as an unbiased classifier that makes
predictions according to the signal in the input.

4.2.2 Latent Adversarial Perturbation

After training our model, we leverage the decoder to interpretably visualize
the bias. For this, we propose an innovative latent adversarial perturbation
based on Deepfool by Moosavi-Dezfooli et al. (2016), which we will introduce
shortly. Deepfool generates adversarial perturbations to fool a classifier into
predicting the wrong label while modifying the input as little as possible.
The space of possible perturbations is infinite. Thus they have to make
approximations to reduce the computational complexity. Moosavi-Dezfooli
et al. (2016) point out that for a binary, affine classifier C(x) = wTx + b
the minimal perturbation δ for which x + δ fools the classifier is given by
δ = − C(x)

||w||22
w. For a general binary classifier they adopt an iterative scheme

of linearizing the classifier around the current point xi and then computing
the minimal perturbation for the linearized classifier as

δi = − C(xi)

||∇C(xi)||22
∇C(xi).
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As this perturbation is an approximation, it might not change the predicted
label of the classifier. Therefore, this process is repeated until the classifier is
fooled and predicts the wrong label.

Starting from DeepFool (Moosavi-Dezfooli et al., 2016), which takes the input
x and predicts y using the classifier C(x), we adjust this algorithm to instead
perturb zb with respect to the biased classifier Cb. As the goal is to visualize
interpretably what the model believes to be the bias, we use it solely at
inference time, when the latent space has been disentangled, and not during
training. While Deepfool can be adapted to work for the multiclass case, for
bias-aligned images, we recover the computationally less intensive binary
case by randomly sampling a target label that is different from the true label.

With this, we generate the adversarially perturbed bias representation zb,adv
that is altered such that the biased classifier cannot predict the correct label.
This implies that we removed the bias from zb as this is what Cb uses for
its predictions. zb,adv is then concatenated with zs and passed through the
decoder to reconstruct x̂adv, which is the debiased version of input image x.
By comparing the original reconstruction x̂ with x̂adv, a practitioner should be
able to recognize their difference, which corresponds to the bias. In Figure 4.3,
we graphically display the latent adversarial perturbation.

Figure 4.3: Graphical depiction of bias visualization through latent adversarial perturbation.
In cyan are the discrepancies to the training structure in Figure 4.2. Through the latent
adversarial perturbation, we generate the adversarially debiased representation zb,adv. This is then
concatenated with zs and passed through decoder D to visualize a debiased reconstruction x̂adv.

While Deepfool (Moosavi-Dezfooli et al., 2016) works in the input space, we
adapt it to operate in the latent space. The reason for the choice of perturbing
in the latent space instead of the pixel space is that a slight change in bias
can lead to a significant effect on the original input. For example, a small
change in the position of an object in an image already has a big effect on the
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individual pixel values of said image. A minimal perturbation with respect
to the input would then exploit some local imperfections of the classifier
instead of correctly perturbing the bias in the image because such a change
would be big in the pixel space.

An additional benefit of the latent adversarial perturbation utilizing the
VAE is that they can be controlled to be inside the learned data distribution.
Because of the probabilistic nature of the VAE, we have the prior distribution
p(zb), which allows us to detect outliers. Hence, we can require that zb,adv
is not an outlier to p(zb) which creates more realistic perturbations. In our
experiments, even without this regularization, zb,adv stayed inside the data
distribution, and thus we did not implement this feature.

We pick Deepfool over other adversarial attacks for two reasons: First, it tries
to change the input as little as possible, whereas most other methods try to
fool the classifier as much as possible within fixed perturbation boundaries.
Using such methods would result in additional information being perturbed
while for our visualization, we only want to remove the bias from an image
and nothing else. Second, we want the perturbation to lie precisely on the
decision boundary of two classes but not change it further. Otherwise, we
not only debias the original representation but introduce a new bias from the
new predicted class, which would complicate interpretation.

4.2.3 Implementation Details

An important part of this thesis is that we try to create a method that does
not rely on architecture and hyperparameter tuning on specific data sets.
Because in order to be applicable in a setting with unknown bias, we do
not make the assumption that we have a bias-labeled validation set present
for this purpose. Instead, we divide the space of possible data sets into
two complementary subsets for which we provide separate architectures
due to the inherent differences. As we worked exclusively with data sets
consisting of images, the architectures are designed solely for this visual
input type. However, extending to other data modalities should not be too
difficult for future work because the changes are mainly in the encoder and
decoder architecture which can be easily adapted to established VAEs in the
alternative fields.

We divide images into uncomplicated, (semi-)synthetic and challenging,
natural, realistic data sets. For example, all variants of MNIST (Lecun et al.,
1998; Xiao et al., 2017; Kim et al., 2019) belong to the former, while all data
sets consisting of photographs are part of the latter. We make this distinction
because the difficulty in learning these data sets is inherently different and
requires disparate treatment.
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4. Interpretably Removing Hidden Bias

In line with previous works (Nam et al., 2020; Lee et al., 2021; Kim et al.,
2021), we will use an MLP for learning synthetic data sets. The encoder
consists of three linear layers with a bottleneck of size 100 for signal and
bias, respectively. The decoder is again consisting of three linear layers. As
activation function, we use the Rectified Linear Unit (ReLU). For the classifier,
we solely use one linear layer for all data sets. This is because for us, the
difficulty of a data set is determined by the complexity of the connection
between latent variables and the realization x thereof. If we knew the latent
variables, inferring the label would be simple. Thus, a single linear layer
suffices.

We adapt the encoder-decoder structure for natural data sets from an MLP
to a CNN, where we use a ResNet18 (He et al., 2016) for encoding and a
ResNet18-like decoder. We decided against using a ResNet20, which Nam
et al. (2020) use, on the basis that it requires average pooling of an 8 × 8 map
for the bottleneck. In contrast to the pooling of a 2 × 2 map for ResNet18,
this reduction is too strong of an information loss in a single layer such that
it impedes good reconstructions. The distinction of data sets and respective
models is necessary because for synthetic data sets, a vanilla CNN would
learn bias and signal, thus making comparisons of methods impossible
while also preventing visualizations of the bias that might be of interest to a
practitioner.

For training our model, we utilize the final ELBO of Equation 4.4, which we
repeat here for the sake of convenience.

log[p(x, y)] ≥ Eq(zs,zb|x)
[
log[p(x|zs, zb)]

]
− DKL

[
q(zs|x)q(zb|x)||p(zs)p(zb)

]
+ Eq(zs,zb|x)

[
(1 − ŷb)

qlog[p(y|zs)] + ŷq
blog[p(y|zb)]

]
Note that the expectation over q(zs, zb|x) is replaced by a Monte-Carlo ap-
proximation usually consisting of a single draw of the latent variables. While
this may seem like a bad approximation, NN are trained in batches where
the loss is averaged over multiple samples, which in a stochastic sense is
similar to drawing the latent variables multiple times. The ELBO needs
to be maximized to make the lower bound on the likelihood of the data
as high as possible. By convention, NN are trained by minimizing a loss
function. For this reason, we negate the ELBO such that we can minimize it.
To have an optimizable loss function, we need to make assumptions about
the distributions contained in the ELBO.

We are working in a classification setting where y is either binary or categor-
ical. Thus, we assume that p(y|·) corresponds to a categorical distribution
for both classifiers. We will denote all possible classes that y can take on as
yj , j = 1, . . . , C, where all yj = 0, except for the correct label k for which
yk = 1. For notational consistency, we will denote the probability of each
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class j as predicted by our classifiers as C(z)j. We omit the subscript implying
bias or signal classifier as the following derivations hold for both. We have

log[p(y|z)] =
C

∑
j=1

yjlog[p(yj|z)] =
C

∑
j=1

yjlog[C(z)j].

Recall that we negate the ELBO and thus its individual terms in order to
minimize a loss function. With this we have recovered the well-known Cross
Entropy (CE) Loss for the training of both classifiers:

−log[p(y|z)] = −
C

∑
j=1

yjlog[C(z)j] = CE

Next, we analyze the term corresponding to the Kullback–Leibler diver-
gence (Kullback and Leibler, 1951). To get a closed form solution we assume
for the priors that p(zs)p(zb) = p(zs, zb) = N (0, ID×D), where ID×D corre-
sponds to the identity matrix of size D and D is the dimensionality of both
latent representations together. Additionally, we assume that the approximate
posteriors q(zs|x) and q(zb|x) take on independent Gaussian forms with di-
agonal covariance matrix q(zs|x)q(zb|x) = q(zs, zb|x) = N (µ, σ2ID×D), with
µ as mean vector and σ2 as variance vector of size D for the assumed-to-be
independent latent representations. With these assumptions, we get

DKL
[
q(zs|x)q(zb|x)||p(zs)p(zb)

]
= DKL

[
q(zs, zb|x)||p(zs, zb)

]
=

∫∫
q(zs, zb|x)log

[q(zs, zb|x)
p(zs, zb)

]
dzsdzb

= −1
2

D

∑
d=1

(
1 + log[(σd)

2]− (µd)
2 − (σd)

2).

For a detailed derivation, we refer to Odaibo (2019).

Lastly, we tackle the reconstruction term log[p(x|zs, zb)]. For (semi-)synthetic
data sets, we assume that the channel-wise pixel values originate from a
Bernoulli distribution. While this assumption might seem odd for RGB
values, it helps account for the fact that most pixels are completely black,
which corresponds to the RGB values (0,0,0). As the Bernoulli distribution is
a special case of the Categorical distribution, we use the same reasoning to
obtain the Binary Cross Entropy Loss (BCE):

−log[p(x|zs, zb)] = −
L

∑
l=1

3

∑
k=1

log[p(xk,l |zs, zb)]

= −
L

∑
l=1

3

∑
k=1

2

∑
j=1

xj,k,llog[D(zs, zb)j,k,l ]

=
L

∑
l=1

3

∑
k=1

BCEk,l
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The indices j, k, l correspond to the Bernoulli realizations, three RGB channels,
and the individual pixels, respectively.

On the other hand, natural, realistic data sets are more colorful. Thus, we
assume that the RGB channels are independent and normally distributed
with constant variance. We assume that all pixels are independent and
identically distributed. Thus, the distribution of each pixel is described by
N (µ, σ2I3×3). Using this assumption we get

−log[p(x|zs, zb)] = −
L

∑
l=1

3

∑
k=1

log[p(xk,l |zs, zb)]

= −
L

∑
l=1

3

∑
k=1

log
[ 1

σ
√

2π
exp

(
− 1

2

( xk,l − D(zs, zb)k,l

σ

)2)]
=

L

∑
l=1

3

∑
k=1

log[σ
√

2π] +
1
2

L

∑
l=1

3

∑
k=1

( xk,l − D(zs, zb)k,l

σ

)2

=
L

∑
l=1

3

∑
k=1

log[σ
√

2π] +
1

2σ2

L

∑
l=1

3

∑
k=1

(xk,l − D(zs, zb)k,l)
2

∝
1

2σ2

L

∑
l=1

3

∑
k=1

(xk,l − D(zs, zb)k,l)
2

=
1

2σ2

L

∑
l=1

||xl − D(zs, zb)l ||22

=
1

2σ2

L

∑
l=1

MSEl ,

where we have recovered a scaled pixel-wise Mean Squared Error (MSE). We
omit the term that is constant with respect to the parameters of the decoder
as it falls away when computing the derivative with respect to those weights.

For better training, we make two adaptions to the loss functions we derived.
First, to have visualizations that capture the original image well, we upweigh
the reconstruction loss by the factor 100, which corresponds to assuming that

1
2σ2 = 100. Second, we rescale the reconstruction and KL term by dividing
through 3L to be invariant to image resolution and number of channels while
retaining their relative loss magnitude.
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Finally, we have arrived at the final loss function when we insert all desiderata
into the negated ELBO. For (semi-)synthetic data sets, we get

L =
1

3L

[
− 100

L

∑
l=1

3

∑
k=1

2

∑
j=1

xj,k,llog[D(zs, zb)j,k,l ]

− 1
2

D

∑
d=1

(
1 + log[(σd)

2]− (µd)
2 − (σd)

2)]
− (1 − ŷb)

q
C

∑
j=1

yjlog[Cs(zs)j]− ŷq
b

C

∑
j=1

yjlog[Cb(zb)j].

For natural data sets, we get

L =
1

3L

[
100

L

∑
l=1

||xl − D(zs, zb)l ||22

− 1
2

D

∑
d=1

(
1 + log[(σd)

2]− (µd)
2 − (σd)

2)]
− (1 − ŷb)

q
C

∑
j=1

yjlog[Cs(zs)j]− ŷq
b

C

∑
j=1

yjlog[Cb(zb)j].

This loss function is derivable with respect to the parameters of the modules
such that we can update them. Note that we detach ŷb from the computational
graph as its purpose is solely the reweighting. For updating the model
weights, we use the Adam optimizer (Kingma and Ba, 2015) with a learning
rate of 0.001 and batch size of 256 for all data sets. The hyperparameter q is
chosen to be 0.7 by following the GCE coiners Zhang and Sabuncu (2018).

We perform early stopping and reduce the learning rate when plateauing
by computing this loss function on a held-out 10% of the training set. For
(semi-)synthetic data sets, we use an early stop patience of 2 versus 20 for
realistic data sets. The patience for the learning rate reduction is one-half of
the early stop patience and reduces the learning rate by a factor of 10.

For creating interpretable visualization of the bias, we adapt Deepfool (Moosavi-
Dezfooli et al., 2016) for our purposes. Originally, it was developed for
perturbing pixels in an input image, while we use it for perturbing latent
dimensions. Thus, while pixel values need to be clamped in [0, 1], we do
not require this. For the distance measure of the perturbation, we use the
ℓ2−norm. Other popular options would be ℓinf or ℓ1. We do not use the
former because it would infer the assumption that bias is equally distributed
among all latent dimensions. We decided against using the latter because
the individual latent dimensions have no inherent meaning. For example,
a rotation of 45◦ of the space does not matter for the latent space. Hence,
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4. Interpretably Removing Hidden Bias

it should not matter for the perturbation. While the ℓ2−norm fulfills this
criterion, the ℓ1-norm does not.

For the bias visualization, we perturb images for which the biased and
unbiased classifiers predict the correct class. With this, we aim to find bias-
aligned images, which we can then perturb into neutral or bias-conflicting
images. To differentiate the two, we can adapt the overshoot parameter,
which is used for rescaling the optimal linearized perturbation. We usually
keep the default of 102% but can make it bigger to create bias-conflicting
images. One needs to keep in mind that a bigger overshoot might also start
perturbing other aspects of the image. The choice of this hyperparameter is
something that can be decided and adapted at inference time when looking
at the visualizations.
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Chapter 5

Experiments

In this chapter, we will present the setup we use to show the effectiveness
of the method we developed in this thesis. In Section 5.1, we introduce the
data sets on which we run our debiasing algorithm. Using a variety of data
sets allows us to analyze the generalizability of all methods. To showcase the
performance of our model, we compare it to state-of-the-art baselines, which
we disclose in Section 5.2. Lastly, in Section 5.3, we report what metrics we
use to measure the performance of the different methods.

5.1 Data Sets

In the following Subsections, we introduce the data sets on which we apply
our method and the baselines. All data sets are designed to contain a majority
of bias-aligned samples. In these images, each class coincides with a specific
bias. Thus, for these bias-aligned images, a classifier can learn the bias
instead of the signal and will still predict the correct class. However, in each
data set, there is also a minority of bias-conflicting images. Leveraging the
bias in these bias-conflicting images to predict the label leads to a wrong
prediction. Therefore, to be generalizable, a debiasing algorithm should learn
to leverage the signal instead of the bias. To analyze how well our method
fulfills this goal, we evaluate and compare its performance.

First, in Subsection 5.1.1, we present a semi-synthetic data set with a syn-
thetically generated bias for which a simple MLP is sufficient for learning.
Second, in Subsection 5.1.2, we present a more challenging data set consisting
of low-quality photographs, which were also induced with synthetic bias.
Lastly, in Subsection 5.1.3, we tackle the running example showcased in
Chapter 1.
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5. Experiments

5.1.1 Colored MNIST

Figure 5.1: Bias-aligned images of the Colored MNIST data set. The columns show different
digits zs with their respective colors zb that predominantly manifest in combination.

Figure 5.2: Bias-conflicting images of the Colored MNIST data set. The columns show different
digits zs with colors zb that are usually not observed together.

Colored MNIST by Kim et al. (2019) is synthetically infused with a color
bias to fulfill the graphical model from Subsection 4.1.1. Starting from the
popular handwritten digit database MNIST (Lecun et al., 1998), the goal is to
label the digit appearing in each 28 × 28 image. We randomly assign distinct
mean colors to each digit that serve as bias attributes. Hence, the signal zs is
the digit while the easy-to-learn bias zb manifests itself as the color.

According to the given percentage of bias-aligned images wanted, we sample
for each image whether its digit will align with the corresponding color or if
it will be conflicting. Then, the coloring of the digit is sampled from a normal
distribution with a fixed mean of the specific color and standard deviation
σ = 0.005. We do not use any preprocessing for this data set. In Figure 5.1,
we show a selection of bias-aligned images for which digit and color match.
Here, leveraging the color as decision rule would lead to the correct label.
However, as this does not generalize well, we want to train a model that
learns to recognize the digit instead of the color.
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5.1. Data Sets

A minority of samples in the training set consists of bias-conflicting samples
for which the biased decision rule leads to the wrong prediction. We show a
random selection of bias-conflicting samples in Figure 5.2. Learning to recog-
nize the digit instead of the color is the only valid decision rule with which
bias-aligned as well as bias-conflicting samples can be correctly classified.

5.1.2 Corrupted CIFAR-10

Figure 5.3: Bias-aligned images of the Corrupted CIFAR-10 data set. The columns show the
different classes zs with their respective corruptions zb that predominantly manifest in combination.
For example, the class birds often has foggy images, while ships are frequently pixelated.

Figure 5.4: Bias-conflicting images of the Corrupted CIFAR-10 data set. The columns show the
different classes zs with corruptions zb that are usually not observed together.

The first real-world data set we apply our method to is the Corrupted CIFAR-
10 data set (Hendrycks and Dietterich, 2019). It is based on the standard
CIFAR-10 data set (Krizhevsky and Hinton, 2009) that consists of images of
different objects such as planes, ships, or dogs that an algorithm has to label.
We then follow the protocol of Hendrycks and Dietterich (2019) and inject
synthetically generated corruptions such as fog, brightness, or saturation for
each class. These synthetic perturbations are designed to be as realistic as
possible.

35



5. Experiments

Identical to Colored MNIST, for each datum, we first sample whether it
is bias-aligned or if it has a conflicting bias, according to the predefined
probabilities. Afterward, we inject the perturbation into the image. The
bias is then the corruption, while the signal is the object captured in the
image. Some bias-aligned images of the data set can be found in Figure 5.3.
The ten classes of Corrupted CIFAR-10 correspond to the ten columns
in Figure 5.3 and from left to right are {Airplane, Automobile, Bird,

Cat, Deer, Dog, Frog, Horse, Ship, Truck}. Similarly, the aligned bi-
ases from left to right are {Snow, Frost, Fog, Brightness, Contrast,

Spatter, Elastic, JPEG, Pixelate, Saturate}. On top of that, in Fig-
ure 5.4, we depict bias-conflicting images, which contain combinations of
signal and bias that are rarely observed in the training set.

For preprocessing, we take random crops consisting of at least 50% of the
original image and resize it to the original 32 × 32 size. This leads to more
diversity, which prevents overfitting on the data. Additionally, we allow
horizontal flips of the images and standardize the pixel values over the entire
data set. To calculate the reconstruction loss, we transform the standardized
pixel values back into [0, 1] so that its size is comparable among all data sets.

5.1.3 Camelyon17

(a) Bias-aligned images (b) Bias-conflicting images

Figure 5.5: Images of the Camelyon17 data set. The columns of the subfigures correspond to
the label. In the first column are images without tumor, while in the second column are tumorous
images. For bias-aligned images, an image with a tumor originates from hospital A, while images
without a tumor come from hospital B. In bias-conflicting images, the opposite is true. The
biasing discrepancy of the hospitals manifests in differently colored patches.

While both previous data sets contain synthetically injected biases, we use
Camelyon17 (Bándi et al., 2019; Koh et al., 2021) to create a biased training
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set without the need for changing the individual images. Additionally, this
medical data set offers the application of our method in a setting where
interpretability is incredibly important and unobserved biases can lead to
detrimental effects. The data set consists of histopathological whole-slide
images from five dutch hospitals for which the goal is to determine whether
a tumor is present or not. The five medical centers are Radboud Univer-
sity Medical Center in Nijmegen (RUMC), Canisius-Wilhelmina Hospital in
Nijmegen (CWZ), University Medical Center Utrecht (UMCU), Rijnstate Hos-
pital in Arnhem (RST), and the Laboratory of Pathology East-Netherlands in
Hengelo (LPON).

We start off from the patch-based variant by Koh et al. (2021) of the Came-
lyon17 data set by Bándi et al. (2019). The 96 × 96 patches have labels that
correspond to whether a tumor is present in the center 32 × 32 patch. For
our purposes, we Center Crop the images to single out this patch. Originally,
the test set in Koh et al. (2021) has been chosen to consist of all images
from UMCU to induce a distribution shift. This specific hospital was chosen
because it is visually most distinctive from the hospital images contained
in the training set. For our purposes, we want to leverage this difference to
induce a bias.

To create our training set, we combine RUMC from the original training
set with the visually disparate UMCU. Then, we sample mostly tumourous
images from the latter while doing the opposite for the former. As test set,
we sample 1250 images for each class from CWZ, RST, and LPON, which
were not included in the training set generation. Thus, we have recovered the
example introduced in Chapter 1. We present an assortment of bias-aligned
patches in Figure 5.5.

Here, the bias is the hospital, while the signal is the presence of a tumor.
Using the hospital from which the patch originated as decision rule only
leads to correct labels in the bias-aligned images of the training set. Similar
to Corrupted CIFAR-10, we allow horizontal flipping and randomly crop and
resize the image to have more diverse images. This risks that some training
images will not contain a tumor but still be labeled positive due to the
cropping. We are aware of this risk and believe that the overfitting-reducing
effect of the cropping outweighs its inducing bias.

5.2 Baselines

In order to evaluate the performance of our method, we have determined
three baselines to which we compare the proposed approach. We use the same
encoder and classifier as in our method for all baselines to have comparable
results. This means we encode synthetic data sets using a three-layered MLP
with a bottleneck dimension of 100 for bias and signal, respectively. For more
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challenging data sets, we use a ResNet18 (He et al., 2016) with a respective
bottleneck dimension of 512 as the encoder. The classifiers are always a single
linear layer. For each method, we apply the preprocessing specified in the
subsections of Section 5.1.

The first baseline we implement is a Vanilla model, which measures the
standard performance without any debiasing scheme. This method only
uses one classifier instead of two. We train it for 100 or 200 epochs for
synthetic and real-life data sets, respectively. Analyzing the performance of
a non-debiasing method helps us assess whether the required assumptions
of a biased setting are fulfilled and shows whether the debiasing algorithms
have a positive effect at all.

The second model we compare the proposed approach to is LfF from Nam
et al. (2020). We use their work as a comparison because they have pioneered
debiasing without explicit bias labels. Lastly, we compare our method to
DisEnt by Lee et al. (2021), a recently proposed state-of-the-art debiasing
algorithm that showed promising results.

As an additional benefit, DisEnt offers visualizations of the bias, which
means that we can compare our method to theirs quantitatively as well as
qualitatively using reconstructed images. As the baseline papers have not
been tuned on Camelyon17, we adopt the hyperparameters and model from
their Corrupted CIFAR-10 architecture to simulate the absence of an unbiased
validation set.

5.3 Evaluation

In order to be able to fairly and reproducibly compare the performance of our
method to the baselines on the various data sets, we first define the metrics
used to evaluate performance. We measure the debiasing capabilities of the
algorithms by calculating their accuracy on an unbiased test set. In this test
set, bias and signal are independent and uniformly distributed, so there is an
equal amount of data samples for each bias and signal combination. Thus,
for the synthetically generated Colored MNIST and Corrupted CIFAR-10, we
generate equally many samples for each combination of bias and signal for
the test set. A biased classifier, which learned the biased decision rule due
to the vast amount of bias-aligned images in the training set, will perform
poorly for this unbiased test set as the spurious correlation between the bias
and the label does not exist anymore.

For Camelyon17, we evaluate the performance of the algorithms by calculat-
ing the accuracy on the three hospitals not included in the test set, where for
each hospital, we sample the same amount of positive and negative samples
for a total of 7500 data points. We use the numbers zero to nine as different
random seeds for generating all the data sets and initializing the models’
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weights at the start of training. We do this to reduce the variability and
cherry-picking potential of the evaluation.

To further investigate the behavior of the different algorithms, we vary the
percentage of bias-conflicting samples in the training set. For each data set,
we calculate the performance where the ratio of bias-conflicting samples
to the entire training set is {0.005, 0.01, 0.02, 0.05, 0.1, 0.2}. The higher this
number is, the more samples are in the training set, for which leveraging
the bias as decision rule does not lead to the correct class prediction. This
variation allows us to investigate how the different methods adapt when the
difficulty of learning the bias changes in a given data set.

As we have pointed out in the previous chapter, a significant advantage of
our method is the interpretable visualization of the bias. While this is not
measurable quantitatively, we will perform a qualitative analysis. For this,
we will compare the bias visualizations offered by DisEnt with our method.
We generate a collection of five image reconstructions simultaneously to
show the performance variability in a data set. For both methods, we select a
case where they perform well while also including the visualization of the
other method. Additionally, in the Appendix, we depict randomly selected
visualizations for all data sets. Vanilla and LfF do not offer such a feature.
Thus, they are excluded from this part of the analysis.

For our visualization of the bias, we single out images for which the signal
and bias classifiers predict the correct label. We expect that these images
are bias-aligned. Next, we sample a target class different from the true label.
Then, using our latent adversarial perturbation, we perturb zb such that the
biased classifier predicts this wrong class. This procedure removes the bias
from the representation such that a classifier that leverages the bias predicts
the wrong label. Thus, by this perturbation, we have removed the bias from
the bias-aligned representation, which we then visualize by reconstructing
both images. The change in both images should correspond to the bias that
this class is associated with. For example, for a bias-aligned image of Colored
MNIST, we would expect our perturbation to perturb the red color of the
digit 0 while keeping the shape of the digit fixed.

To visualize the bias, DisEnt (Lee et al., 2021) swaps the bias representation
of two images to break the connection between the signal and bias in bias-
aligned images. When generating their bias visualization, it is crucial that
we perform their approach using identical encoders, decoder, and classifiers
as our method. This enables us to compare both bias visualization strategies
directly. If we used the trained model of DisEnt for applying their bias visu-
alization, it would be ambiguous whether differences between our method
and DisEnt’s arise due to the different bias visualization approaches or due
to the different models and representations. As we want to compare the bias
visualization strategies separately from the training, at inference time, we
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will use the representations and model weights trained by our method and
apply DisEnt’s swapping approach.

As a starting point for DisEnt’s swapping approach, we utilize the same
supposedly bias-aligned images used in our method. Then, we randomly
sample images for which the bias classifier predicts the specific target class
used in our perturbation. Therefore, the sampled images’ bias conflicts
with the original images’ signal. Thus, we replace zb of the original images
with the sampled images’ latent bias dimensions to obtain a bias-conflicting
representation. Consequently, by reconstructing the original supposedly
bias-aligned image together with its adapted bias-conflicting version, we
would expect to observe the bias of the corresponding class.
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Chapter 6

Results

In the following section, we will present the results of our experiments on
the different data sets. In Section 6.1, we describe how we report the results
of all models. Then, in Section 6.2, Section 6.3, and Section 6.4, we present
the results of our experiments on Colored MNIST, Corrupted CIFAR-10, and
Camelyon17, respectively.

6.1 Presentation of Results

For quantitatively evaluating the debiasing capabilities of each model, we
report the average accuracy on the unbiased test set as well as the estimated
standard deviation of a single run. For each setting, we compare the best
performing model with the second best through a two-sided paired t-test
to determine whether they differ significantly. This test assumes that the
underlying proportions are approximately normally distributed. We argue
that this is the case as the accuracy is calculated as an average over all random
seeds and test samples for which we can invoke the central limit theorem.
If the null hypothesis of equality can be rejected on a 5% significance level,
then we indicate this by bolding the accuracy. If the null hypothesis can not
be rejected, we underline all methods that are not significantly worse than
the one with the highest empirical accuracy.

For qualitatively evaluating the bias visualization capabilities, we show the
reconstructions with Ours’ and DisEnt’s visualization strategies using our
trained model as a backbone for both. We first show the original image
with its corresponding reconstructed image. Then, we visualize the debiased
representations according to Ours’ and DisEnt’s method. We cherry-pick
two collection of images, one for each work, where the methods show good
performance. Additionally, in the appendix, we visualize a randomly selected
assortment of images.
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6.2 Colored MNIST

Colored MNIST (Kim et al., 2019) is the only (semi-)synthetic data set of
our experiments. Most of the model design was performed on this data set.
Due to the nature of the setting, there is no validation set with labels for
the bias. Thus, model architecture design and hyperparameter tuning have
been performed by considering test set performance. This holds true for both
baseline papers (Nam et al., 2020; Lee et al., 2021) as well as our method. The
interpretation of this section’s results should consider this fact.

In Table 6.1, we show the performance of all models on the unbiased test
set of Colored MNIST. We see that Vanilla significantly outperforms the
debiasing algorithms for the 10% and 20% cases. The debiasing methods
show their benefit only for a lower amount of bias-conflicting samples in
the training sets. Here, our method seems to outperform or at least match
all baselines while DisEnt always is the runner-up. Especially for the 0.5%
setting, there appears to be a considerable gap in performance between our
and other methods. In the 2%, 1%, and 0.5% environments, all debiasing
methods outperform the vanilla model, which indicates their usefulness.
The estimates differ from the values presented in the baseline papers (Nam
et al., 2020; Lee et al., 2021) because we also vary random seeds over data set
generation instead of only over the model.

Colored MNIST Baselines

Bias-conflicting Vanilla LfF DisEnt Ours

20% 94.92 ± 0.24 70.18 ± 4.19 90.94 ± 1.46 85.24 ± 1.60
10% 91.24 ± 0.26 81.99 ± 5.01 89.12 ± 1.44 85.35 ± 1.23
5% 85.48 ± 0.50 81.18 ± 2.94 85.54 ± 2.49 86.14 ± 1.78
2% 73.28 ± 0.56 76.97 ± 2.49 82.38 ± 1.68 83.80 ± 1.28
1% 59.41 ± 0.39 68.91 ± 5.01 76.33 ± 3.41 80.03 ± 2.04

0.5% 43.70 ± 0.83 60.42 ± 2.72 63.98 ± 4.78 71.63 ± 2.49

Table 6.1: Unbiased accuracy + standard deviation in % for Colored MNIST. For each percentage
of bias-conflicting samples in the training set, the method with the significantly highest accuracy is
denoted in bold. If no method is significantly better than the others, all methods not significantly
worse than the highest are underlined.

In Figure 6.1, we picture the bias visualization from DisEnt and our method.
Both collections of images are specifically selected to show the potential of
either approach, as described in Section 6.1. In Figure B.1 of Appendix B, we
additionally present a collection of randomly selected images.

In general, DisEnt perturbs the bias representations so strongly that this
also leads to a change in the digit. This is because the bias and signal
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representations are not perfectly disentangled. Thus, the leftover signal in
the bias dimensions gets swapped. On the other hand, our method does
not perturb the digit while regularly perturbing the color. However, due to
the weaker magnitude of change, our approach sometimes does not visibly
change the image at all.

A similar impression arises when analyzing the cherry-picked Figure 6.1. We
see that the visualizations of our method are always close to the original
reconstruction, while DisEnt shows bigger changes in signal as well as bias.
For the left collection, we notice that our method successfully changes the
color of the reconstruction while keeping the signal. The degree of change
varies in the images. Conversely, DisEnt changes the color as well as making
the digit unreadable. On the other hand, in the collection on the right, DisEnt
manages to nicely perturb only the color, while our method for some images
does not visibly change the reconstructions at all. Notably, our approach also
nicely perturbs the bias for the second, fourth, and fifth columns.

Figure 6.1: Selected visualizations of bias for Colored MNIST. Both collections of images are
cherry-picked for presenting the potential of the respective visualization method. On the left
side, we depict images for which our method shows promising results, while on the right side are
visualizations working well for DisEnt.

6.3 Corrupted CIFAR-10

Similar to the previous data set, due to the absence of an unbiased validation
set, it is to be expected that the baselines tuned their hyperparameter to
this data set and individual settings by peeking at the test set performance.
As for us, we have used this data set to design the general architecture for
all natural data sets while keeping the training method we developed with
Colored MNIST.

In Table 6.2, we show the performance of all models on the unbiased test
set of Corrupted CIFAR-10. The best performing models are LfF and Ours.
We observe that for higher percentages of bias-conflicting samples, our
method is better than LfF, while for lower proportions, the opposite is the
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case. DisEnt seems to be generally worse than the other debiasing methods.
However, it makes an interesting peak in performance for the 0.5% case,
which might be attributed to randomness as it does not follow the usual
trend of decreasing performance with decreasing bias-conflicting samples.
Finally, Vanilla performs worse than the debiasing methods except for the
20% case. Thus, the debiasing methods present an improvement over a
standard empirical risk minimizer.

Corrupted CIFAR-10 Baselines

Bias-conflicting Vanilla LfF DisEnt Ours

20% 67.57 ± 0.41 64.50 ± 2.17 60.99 ± 5.84 66.75 ± 1.34
10% 57.11 ± 0.76 59.29 ± 3.16 53.47 ± 4.43 61.26 ± 2.06
5% 46.89 ± 0.78 55.77 ± 2.33 46.40 ± 5.81 55.63 ± 1.54
2% 34.90 ± 0.81 47.26 ± 1.56 36.98 ± 4.43 43.66 ± 1.81
1% 28.22 ± 0.73 39.39 ± 2.16 31.22 ± 2.69 35.17 ± 1.19

0.5% 22.26 ± 1.03 30.04 ± 1.67 31.97 ± 3.34 27.30 ± 2.04

Table 6.2: Unbiased accuracy + standard deviation in % for Corrupted CIFAR-10. For each
percentage of bias-conflicting samples in the training set, the method with the significantly highest
accuracy is denoted in bold. If no method is significantly better than the others, all methods not
significantly worse than the highest are underlined.

In Figure 6.2, we picture the bias visualization from DisEnt and our method.
On the left, the selected collection of images for our approach shows that
we managed to remove the saturation bias for the trucks in the first and
fourth columns. It is not possible to recognize the JPEG and pixelation bias
in the second and third columns. In the last column, the visualization of
our method has become much darker, indicating a bias related to brightness,
which with further research, might lead a practitioner to the actual bias that
is snow. DisEnt does not work well for these images, as the swapping of
the bias vectors also perturbs the image’s content. Arguably, for the last
column, DisEnt shows that the bias from the swapped image is contrast
because nothing is visible anymore.

The right collection of images in Figure 6.2 is meant to show visualizations
where DisEnt performs well. It was challenging to find pictures where their
approach did not change the image’s content entirely. Here, in the first
column, the visualization of DisEnt has much more contrast than the original
reconstruction, which indicates a bias. Also, the saturation in the trucks in the
third and fifth columns has changed to be brighter, even if the content also
changed a bit. As for our method, one can see small changes in saturation
for the third image that make the colors look less extreme and thus show a
bias. For the other images, the bias visualizations are relatively similar to the
original reconstructions.
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In Figure B.2 of Appendix B, we additionally present a collection of randomly
selected images. There, one can observe the general behavior that for most
visualizations, our method does not change the image visibly, while DisEnt
changes the complete content of the picture. This recurrent behavior for
Corrupted CIFAR-10 shows that both approaches rely on the underlying
model’s disentangling capabilities, which should also be considered when
attempting to improve bias visualizations.

Figure 6.2: Selected visualizations of bias for Corrupted CIFAR-10. Both collections of images
are cherry-picked for presenting the potential of the respective visualization method. On the left
side, we depict images for which our method shows promising results, while on the right side are
visualizations working well for DisEnt.

6.4 Camelyon17

The binary data set Camelyon17 (Koh et al., 2021) has been curated by us to
contain a bias corresponding to different hospitals. We did not adapt any
architectural choices or perform hyperparameter tuning on this data set to
have a perfectly unbiased estimate and comparison of performance among
all models.

In Table 6.3, we depict the performance of all methods. Notably, Vanilla
consistently performs better than or equal to the debiasing methods. When
analyzing only those, we see that our method outperforms or matches the
performance of the other two debiasing algorithms. Of those two, LfF shows
better results than DisEnt. Interestingly, there is great variability of the runs
in the lower half of bias-conflicting percentages for all debiasing methods.

In Figure 6.3, we show visualizations selected for demonstrating the debiasing
capabilities of DisEnt and our method. In the left collection, the first column
shows an image containing a tumor. The tumor’s presence correlates with
the picture being from another hospital, which manifests itself as a lilac
color. Our method accurately changes the lilac color while keeping the tumor
content in the image. When comparing to DisEnt, we observe that their
method perturbs the image strongly such that other information from the
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Camelyon17 Baselines

Bias-conflicting Vanilla LfF DisEnt Ours

20% 65.72 ± 2.36 31.98 ± 1.76 31.40 ± 2.19 45.52 ± 3.71
10% 65.02 ± 1.67 37.87 ± 2.87 35.34 ± 2.44 48.62 ± 4.82
5% 64.05 ± 2.98 42.05 ± 10.07 39.71 ± 4.13 53.57 ± 5.92
2% 62.77 ± 2.47 49.46 ± 7.83 44.28 ± 3.55 65.22 ± 4.58
1% 61.44 ± 1.53 60.14 ± 8.74 53.44 ± 5.80 64.42 ± 4.95

0.5% 60.85 ± 1.81 65.65 ± 7.45 56.15 ± 6.41 59.16 ± 7.83

Table 6.3: Unbiased accuracy + standard deviation in % for Camelyon17. For each percentage of
bias-conflicting samples in the training set, the method with the significantly highest accuracy is
denoted in bold. If no method is significantly better than the others, all methods not significantly
worse than the highest are underlined.

image is lost, additionally to the change in color. For the non-tumorous
pictures in the left collection, our method changes the color visibly in the
second, fourth, and fifth columns, even though for the second column, it is
barely visible in comparison to the intense color change of DisEnt. For all
four non-tumorous images, DisEnt adequately swaps the color corresponding
to the other hospital. Although, their method also generates some artifacts,
for example, adding and removing some cell nuclei in the third column.

In the right collection of Figure 6.3, DisEnt very elegantly colors the non-
tumorous images of the first three columns in lilac. At the same time, it
removes said color in the two other images that contain the tumor. This
happens without creating too many artifacts, except for slight changes in
the second column. Our method correctly perturbs the second and fourth
images while leaving the other images visibly unchanged.

Additionally, in Figure B.3 of Appendix B, we present a collection of randomly
selected images. In these visualizations, one can observe that generally, our
bias visualization method tends to color all reconstructions in lilac. Images
that already are in this color stay unchanged. In comparison, DisEnt regularly
changes colors in both directions. Due to its strong perturbation, it can
visualize the bias in most images but often creates artifacts in the process.
In the next chapter, we will argue that the softer approach of our method is
preferable for a practitioner.
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Figure 6.3: Selected visualizations of bias for Camelyon17. Both collections of images are
cherry-picked for presenting the potential of the respective visualization method. On the left
side, we depict images for which our method shows promising results, while on the right side are
visualizations working well for DisEnt.
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Chapter 7

Discussion

In this chapter, we discuss the improvements of our method compared
to previous work by interpreting the results of our experiments. First, in
Section 7.1, we review the reliance on a bias-labeled validation set of all
debiasing methods. Next, in Section 7.2, we examine the baseline methods’
debiasing capabilities and show how our method’s adjustments pose an
advantage over previous works. In the following Section 7.3, we extend the
accuracy-based analysis by the advocated aspect of visualizing the bias and
discuss the differences in DisEnt and our method. Lastly, in Section 7.4, we
debate the interpretability of our approach.

7.1 Absence of Validation Set

There cannot be a bias-labeled validation set in a setting of unknown, hidden
bias. Thus, debiasing methods for such data sets must not rely on such
a set for optimizing their architecture and tuning their hyperparameters.
Of all debiasing methods without individual bias labels, to the best of our
knowledge, all works apart from JTT (Liu et al., 2021) completely ignore this
problem. Thus, we want to call for more transparency, honesty, and critical
discussions regarding this subject.

So far, all debiasing methods for hidden bias have relied on the presence of a
validation set where the bias was labeled for each data point. As has been
argued in previous chapters, this is counter-intuitive to the underlying idea
of this setting where the bias is unknown. This thesis presents a method that
does not require hyperparameter tuning. By theoretically founding our loss
function in the ELBO, we remove the need for weighting each element of the
loss, as the ELBO predetermines the relative size thereof. This removes the
need to assume the presence of a bias-labeled validation set for our method.
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Furthermore, to the best of our knowledge, we are the first method in the
hidden bias domain that uses a biased validation set, where we split the
initial training data into training and validation sets. Both of which do not
contain labels on the bias. By integrating the VAE with its ELBO, we can
perform early stopping on this biased validation set and reduce the learning
rate when plateauing. In contrast to previous methods, this works because
by including a generative model in the architecture, we can train until this
model has learned the data distribution.

To be transparent, we want to state that we have used Colored MNIST
and Corrupted CIFAR-10 for designing our training scheme and model
architecture for (semi-)synthetic and realistic data sets, respectively. As
there is no bias-labeled validation set, we used their test sets for evaluating
performance gains, always considering the average over ten random seeds.
Therefore, the results of our method on these two data sets are biased as
it is possible that we overfitted on the data distribution. Regarding the
debiasing baselines LfF (Nam et al., 2020) and DisEnt (Lee et al., 2021), it is
reasonable to expect that in their works, they optimized their architecture
and hyperparameters on those test sets as well. As Vanilla also makes use
of our architectural choices, we argue that the comparison of all methods is
still fair. The reason being that all methods possibly overfitted to the data
distributions of Colored MNIST and Corrupted CIFAR-10 to some degree.
To get a completely unbiased evaluation of performance, we introduced
Camelyon17, for which no method was allowed to adapt anything.

7.2 Quantitative Analysis

In this section, we will analyze the debiasing capabilities of our as well
as the baseline methods. The accuracy estimates we obtained differ from
the values presented in the baseline papers (Nam et al., 2020; Lee et al.,
2021). This is because we also vary random seeds over data set generation
instead of only over the model parameters. This is also why our experiments’
estimated standard deviations are higher than those stated in the baselines.
We advocate for including data set generation when varying the random
seeds, as this reduces the potential of architectural overfitting. Especially in
our setting of hidden bias where architectures are designed by looking at the
test set performance, this at least prevents overfitting on a specific test set.

When interpreting the results, we evaluate the performance of the debiasing
methods only for the settings where Vanilla did not perform best. This is
because, for the cases where a standard empirical risk minimizer learns
the signal and outperforms debiasing methods, it is safe to conclude that
the easy-to-learn assumption is not fulfilled. Generally, it is coherent that
Vanilla performs better the more bias-conflicting samples are contained in
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the training set. Because an increase in bias-conflicting data points weakens
Subassumption 2c, which states that the easiness of learning outweighs the
number of bias-conflicting samples for which the biased decision rule does
not work. Thus, weakening the debiasing methods while strengthening the
vanilla model.

Overall, for settings where the easy-to-learn assumption is likely to be ful-
filled, our method shows auspicious results. In 11/13 of those cases, we are
better or equal than the other debiasing methods. We take this as proof that
our adaption from reweighting the samples for the signal classifier by the
RDS in LfF and DisEnt, to reweighting by (1− ŷb)

q is not only a simplification,
but also improves performance notably.

One critical point with the RDS is that its calculation requires the use of
an exponential moving average on its individual cross entropy terms for
training stability. This is problematic because it unintentionally hinders the
downweighting of bias-aligned samples for the signal classifier if the bias is
learned quickly by the biased classifier.

The reason for this is that in the first training epoch, both classifiers will not
be able to predict the label well. Thus, we expect the RDS to be around 50%
for each sample. As soon as the biased classifier has picked up on the biased
decision rule, the RDS should become very small for bias-aligned data points.
For Colored MNIST, this learning of the bias usually happens in the first
epoch. However, due to the exponential moving average on the individual
terms of the RDS, the weighting of the next epoch takes into account that
before, the RDS weighting was 50%. Using LfF’s decay parameter of 0.7, in
the optimal case, only after 12 epochs will the weight be at 1%. This means
that until then, in a 1% bias-conflicting setting, a signal classifier would put
more aggregated weight on bias-aligned samples than others. Therefore, it
will learn the biased decision rule first, before attempting to learn the true,
unbiased decision rule. We argue that unlearning an existing decision rule is
more challenging than learning the correct decision rule from scratch. For
this reason, our reweighting strategy by (1 − ŷb)

q, which does not require
an exponential moving average, improves the performance. Lastly, the RDS
also uses a class-wise max-normalization whose function is unclear while
considerably influencing performance. Contrary to that, our reweighting is
explicit in what it is doing.

We want to emphasize the performance of our approach on Camelyon17,
the only data set on which no method was able to tune their architecture
or hyperparameters. In this binary data set, our method is the best of all
considered debiasing methods. We hypothesize this is the case because LfF’s
and DisEnt’s signal classifiers also learn the bias. Theoretically, they train
solely on bias-conflicting data points, which for a binary data set, makes them
biased too. This is because if a well-performing decision rule for bias-aligned
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samples is that hospital A implies no tumor, then for bias-conflicting data
points, the opposite decision rule of hospital A implies tumorous will work.
Thus, there is no need for either classifier to learn the signal. This can not
happen with our method because the VAE requires that the signal, which is
necessary for reconstruction, has to be learned in the latent dimensions.

Interestingly, for some settings in this binary data set, LfF and DisEnt perform
worse than random guessing. We hypothesize that their training time is too
long due to not having early stopping. We believe that by training for too
long, their biased classifier learns the signal, similar to Vanilla, and gives
the unbiased classifier samples to learn for which this correct decision rule
leads to the wrong solution. For example, images where only a tiny part
of it is tumorous. Thus, the signal classifier learns the opposite decision
rule, which will not work for all samples on which the bias classifier, which
learned the signal decision rule, performs well. In a nutshell, we hypothesize
that for them, both classifiers usually predict the opposite class given an
image, where the biased classifier uses the correct decision rule. This theory
is supported by the fact that the accuracy of vanilla is roughly one minus the
accuracy of LfF and DisEnt for the settings where a biased classifier would
learn the signal.

The findings on Camelyon17 indicate that our method, which is specifically
designed not to require data set specific hyperparameter tuning, is general-
izable for data sets where there is no bias-labeled validation set, while the
other methods are not.

Over all data sets, our method has a lower variability in performance than the
other debiasing methods, which we attribute to the fact that we are able to
use learning rate reducing measures. Those require using a biased validation
set during training, which only our method does. The high variability in
Camelyon17 for all methods implies that the signal classifier only finds the
signal in some cases. Thus, future work could be conducted to make this
more stable such that the signal is detected more regularly.

Overall, these results show that our debiasing method can match or exceed
the performance of state-of-the-art debiasing methods while not relying on
hyperparameter tuning.

7.3 Qualitative Analysis

Now, we will compare the bias visualizing capabilities of DisEnt and our
method. Recall that in a setting of hidden bias, it is beneficial for the practi-
tioner to obtain information about possible spurious correlations contained
in a data set.
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In the figures of Chapter 6 as well as Appendix B, it is clearly visible that
the swapping of DisEnt perturbs the images stronger than our method. This
is to be expected, as they substitute the whole latent bias dimensions while
our method tries to perturb this representation as little as possible. While in
DisEnt, the true bias is emphasized more, their images also contain artifacts
due to the strong perturbation. For example, in Figure B.3, DisEnt adds or
removes cell nuclei quite frequently. Conversely, our method either perturbs
the bias or does not perceivably change the reconstruction.

We will now argue why our conservative visualizations are more desirable.
For real-life data sets, whose images consist of more than solely signal
and bias, the VAE will have to store this content somewhere in the latent
dimensions. As this information is irrelevant to the label, it is plausible
that some of the image content will be learned in the bias dimensions. By
swapping the bias dimensions of two images, this image-specific content gets
swapped too, leading to non-similar reconstructions. Then, a practitioner can
not unambiguously observe the bias when comparing original reconstruction
and swapped bias visualization because content apart from the bias has been
swapped too. Our method does not have this downfall, as our goal is to
perturb the bias as little as possible, which results in all label-independent
information staying constant while only the bias changes.

The presence of information in an image outside of signal and bias is also
why we claim that our training of the decoder simultaneously with the
encoders and classifiers is to be preferred. This is opposed to DisEnt, which
train their decoder only after having trained everything else. Their encoders
are trained by minimizing the loss of the classifiers. We believe that for
real-life data sets, if the decoder is trained with fixed encoders that focus on
only learning bias and signal, some label-independent information in the
images gets lost. Thus, training the decoder only after fixing the encoders
and classifiers makes reconstruction a more challenging task and possibly
leads to less precise visualizations. Therefore, training the encoders and the
decoder separately hinders visualization capabilities regarding the bias.

An additional reason why we argue that our method is to be preferred is
that from the viewpoint of a practitioner that does not know the bias a priori,
all artifacts of DisEnt have to be considered as possible bias. While for our
method, not having a visible change in a reconstruction does not pose a
potential bias. With our method, a practitioner can skim through images
until they see a change, which they can then attribute to being the bias. The
bias does not need to be visible in every image. Using DisEnt’s method,
on the other hand, a practitioner would have to consider every artifact as
a possible bias which is not helpful. This difference is especially visible
for cases where signal and bias are not perfectly disentangled, such as in
Figure B.2.
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Here, in Corrupted CIFAR-10, the visualizations of DisEnt heavily change
the image’s content, while our method often does not visibly change the
reconstruction at all. This implies that the learned latent representations are
not learned or disentangled well. Because by swapping the bias dimensions,
the content also changes. Additionally, the bias classifier also appears not
to have meaningful decision boundaries as seemingly every point is close
to a border. In this entangled latent space, we observe that our method is
more lenient towards not perfectly disentangled representations. As our
visualizations at least keep the content of the original image. While so far,
we have used a standard VAE and disentangled the latent representations by
leveraging the differently weighted signal and bias classifiers, future work
could investigate the application of more sophisticated, disentangling VAEs.

If we managed to disentangle signal and bias perfectly, then it would be
possible to train the signal classifier without downweighting bias-aligned
samples. However, trying this showed that perfect disentanglement has not
yet been achieved, as such an unweighted training decreased performance.
Regardless, we postulate that our model is more designed towards this goal
than DisEnt. Because their classifiers take bias as well as signal dimensions as
their input. If the representations were truly disentangled, then the classifiers
should not see the other representation. But then, their swapping would also
not work anymore.

Regarding the overall lower performance in Corrupted CIFAR-10 for all
methods, we theorize that in this data set, not every bias is easier to learn
than the signal. For example, in Figure 6.2, the JPEG bias of horses or the
elastic perturbations bias from frogs for a human seem more challenging to
recognize than the animal. Additionally, we theorize that a limitation of our
current VAE is that it cannot recognize all biases in Corrupted CIFAR-10. For
example, in Figure 6.2, the plain reconstructions of the car do not show the
frost bias of the original image. Thus, it can not be expected that the biased
classifier picks up on an attribute that the encoder is not sophisticated enough
to capture. Note that this statement does not contradict the easy-to-learn
assumption because it concerns the limitations of the model architecture
and not the actual content of the image itself. For example, if a model were
designed only to see black and white, then it would not be able to recognize
the color bias in Colored MNIST, while the easy-to-learn assumption still
clearly holds. Therefore, future work could investigate not only disentangling
VAEs but also generative models, such as the NVAE (Vahdat and Kautz, 2020),
which are able to capture more details of the images in their latent space and
reconstructions.

In Figure 6.1, in the left collection, the images containing the digit 2 have
different strengths of color perturbation for our method. This nicely shows
that depending on the target class of the perturbation, we get different

54



7.4. Interpretability

visualizations. For the digit two in the fourth column, the target bias is red,
which is closer to pink, and thus the bias visualization shows less of a change.
While for the fifth column, the target color’s decision boundary is farther
away, therefore, the change is more prominent. This finding indicates that a
practitioner can also experiment with choosing different target classes of the
latent adversarial perturbation for the same image to see which attributes
change regularly. This can help in deducing the hidden bias.

While these visualizations have to goal of helping a practitioner to deduce
the hidden bias, they also have an auxiliary purpose. If the assumptions of
our model are not fulfilled, then this might be determined by analyzing the
visualizations. For example, if the easy-to-learn assumption is not fulfilled,
then the bias classifier will learn to detect the signal instead of the bias.
Therefore, in the visualizations, the signal instead of the bias of the image
would be changing. This would indicate to a practitioner that the bias
classifier learned the signal instead of the bias. In this case, there is no need
for a debiasing algorithm, and applying a standard empirical risk minimizer
such as Vanilla should be preferred. By having interpretable visualizations
of what the model believes to be bias, we allow for the inspection of the
assumptions required for our method.

7.4 Interpretability

Initially, the goal of this thesis was to use the latent adversarial perturbation
during training and not only at inference time. Unfortunately, doing this
considerably decreased performance, so we discarded the idea. The reason for
the reduction in accuracy is that the debiasing perturbations are not consistent
enough, as can be observed in the randomly selected figures of Appendix B.
They are not consistent enough because the latent representations are not
perfectly disentangled and because adversarial attacks tend to exploit local
imperfections of a classifier’s decision boundary instead of truly perturbing
the bias.

Thus, we leverage our latent adversarial perturbation solely for bias visual-
ization at inference time. Here, not every visualization needs to be perfectly
debiased, as a practitioner can recognize biases even if only a subset of
visualizations show it.

Nonetheless, we believe it is correct to call our method interpretable. This is
because the decoder trained for visualizing the bias is trained simultaneously
with the classifiers and not after. Hence, it is an inherent part of the model
instead of a post hoc analysis tool. We adopt the distinction of Lipton
(2018), who states that interpretability asks how the model works while
explainability asks what else the model can tell. As the decoder is an
inherent part of the model, the perturbations visualized by it are a part of
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how the model works. Nevertheless, we acknowledge that arguably the latent
adversarial perturbation itself falls into the category of explainable methods
because it is not used during training. Thus, our bias visualizing method is a
bit of both.

Training an interpretable model is in contrast to the methods of the baseline
papers. Nevertheless, we show promising results when compared to their
performance. This indicates that we are able to overcome the well-known
accuracy-interpretability trade-off as we show good performance against
non-interpretable baselines while being able to interpretably visualize hidden
biases.
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Chapter 8

Conclusion

In this thesis, we have tackled the problem of hidden bias. In this setting,
a classifier leverages spurious correlations to make its predictions. Without
proper treatment of this situation, the application of such an algorithm can
have adverse effects in the real world, where such a spurious correlation does
not hold anymore.

This thesis advances the research in creating an unbiased classifier that does
not fall prey to such biases. For defining the environment in which our
debiasing method is expected to unfold its potential, we define the graphical
model and state the assumptions that give rise to a setting where an empirical
risk minimizer would fall prey to spurious correlations.

For training an unbiased classifier, we derive a novel reweighting scheme
based on our theoretical considerations and train a generative model with it.
In this model, we train a bias classifier to be as biased as possible and simul-
taneously train an unbiased classifier by upweighting samples for which the
biased decision rule does not work well. We show that our simple weighting
factor can match or outperform existing works. Additionally, by training a
generative model, we are able to generate interpretable visualizations of the
bias at inference time. For this, we leverage latent adversarial perturbations,
with which we improve upon existing works as we do not introduce artifacts.

We advocate for more transparency and collaborations toward the tuning of
hyperparameters, as future methods should focus on training in the absence
of a bias-labeled validation set. Furthermore, we believe our work can be
extended by improving the VAE structure so that it disentangles and has
better capabilities for capturing and reconstructing biases.

Overall, we show that our interpretable method can overcome the accuracy-
interpretability trade-off. We show good performance against non-interpretable
baselines while being able to interpretably visualize hidden biases.
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Appendix A

Evidence Lower Bound

log[p(x)] =
∫

q(z|x)log[p(x)]dz

=
∫

q(z|x)log
[ p(x, z)

p(z|x)
q(z|x)
q(z|x)

]
dz

=
∫

q(z|x)log
[ q(z|x)

p(z|x)

]
dz +

∫
q(z|x)log

[ p(x, z)
q(z|x)

]
dz

log[p(x)] ≥
∫

q(z|x)log
[ p(x, z)

q(z|x)

]
dz

=
∫

q(z|x)log
[ p(x|z)p(z)

q(z|x)

]
dz

=
∫

q(z|x)log[p(x|z)]dz −
∫

q(z|x)log
[q(z|x)

p(z)

]
dz

= Eq(z|x)
[
log[p(x|z)]

]
− DKL

[
q(z|x)||p(z)

]
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Appendix B

Bias Visualizations

Figure B.1: A random collection of bias visualizations for Colored MNIST. The randomly selected
images are varied over random seeds and the percentage of bias-conflicting images in the training
set.
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B. Bias Visualizations

Figure B.2: A random collection of bias visualizations for Corrupted CIFAR-10. The randomly
selected images are varied over random seeds and the percentage of bias-conflicting images in the
training set.

Figure B.3: A random collection of bias visualizations for Camelyon17. The randomly selected
images are varied over random seeds and the percentage of bias-conflicting images in the training
set.
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