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ETH Zürich

Abstract—Appendicitis is a common childhood disease, the
management of which still lacks consolidated international crite-
ria. In clinical practice, heuristic scoring systems are often used
to assess the urgency of patients with suspected appendicitis.
Previous work on machine learning for appendicitis has focused
on conventional classification models, such as logistic regression
and tree-based ensembles. In this study, we investigate the use of
risk supersparse linear integer models (risk SLIM) for learning
data-driven risk scores to predict the diagnosis, management, and
complications in pediatric patients with suspected appendicitis on
a dataset consisting of 430 children from a tertiary care hospital.
We demonstrate the efficacy of our approach and compare the
performance of learnt risk scores to previous analyses with
random forests. Risk SLIM is able to detect medically meaningful
features and outperforms the traditional appendicitis scores,
while at the same time is better suited for the clinical setting
than tree-based ensembles.

Index Terms—interpretable machine learning, pediatric appen-
dicitis, diagnosis, treatment, decision support

I. INTRODUCTION

More than one in every fourteen people suffers acute
appendicitis during a lifetime, with the highest incidence rate
at an age between 10 and 19 years [1]. The cause for this
spontaneous disorder is still poorly understood and there are no
consolidated management guidelines. The most common treat-
ment is the appendectomy, a surgical removal of the appendix.
However, there is increasing evidence of similar efficacy of
nonsurgical interventions with antibiotics [2], [3]. Appendicitis
requires prompt treatment, since increased time to intervention
is associated with a higher risk of developing life threatening
conditions [4]. For this reason, hospital practitioners often
use risk scoring systems to assess patient urgency. These
include the Alvarado (AS) and pediatric appendicitis scores
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(PAS) [5], [6] (see Table I). These scores were developed
heuristically by experts and their predictive performance is
limited to discarding extreme cases of appendicitis.

TABLE I
ALVARADO (top) AND PEDIATRIC APPENDICITIS (bottom) SCORES [5],

[6]. RLQ STANDS FOR RIGHT LOWER ABDOMINAL QUADRANT; AND WBC
– FOR WHITE BLOOD CELL COUNT.

Alvarado Score:
Condition Score

RLQ tenderness 2
Elevated temperature: > 37.3 °C 1
Rebound tenderness 1
Migration of pain to the RLQ 1
Anorexia 1
Nausea or vomiting 1
Leukocytosis: WBC > 10000/µl−1 2
Leukocyte left shift: > 75% neutrophils 1

Total 10

Pediatric Appendicitis Score:
Condition Score

RLQ tenderness at cough, percussion,
or hopping 2

Anorexia 1
Fever: ≥ 38.0 ºC 1
Nausea or vomiting 1
Tenderness over right iliac fossa 2
Leukocytosis: WBC > 10000/µl−1 1
Neutrophilia: > 75% neutrophils 1
Migration of pain to RLQ 1

Total 10

A. Machine Learning and Appendicitis

There exists a rich body of literature on using machine
learning (ML) models for predicting appendicitis in both
general [7]–[9] and pediatric populations [10]–[14]. Most of
these studies focus on relatively simple tabular datasets and
leverage conventional classification models, such as logistic
regression, decision trees, support vector machines, neural
networks, and tree-based ensembles.
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This raises the question, whether a more interpretable
machine learning model which is amenable to the clinical
setting could be utilized to achieve predictive performances
comparable to previous results. In our work, we address this
need by learning risk scores reminiscent of the classical AS
and PAS in a data-driven manner and demonstrate that these
simple and interpretable classifiers are on par with opaque
techniques, such as random forests [15]. In particular, we apply
risk supersparse linear integer models [16] to a dataset of 430
pediatric patients with suspected appendicitis to derive risk
scores for diagnosis, necessity of surgical intervention, and
developing complications.

B. Interpretable Machine Learning

Recently, there has been a significant interest in interpretable
machine learning models, i.e. models that are designed to be
human-understandable [17]. This interest is driven by prac-
titioners applying machine learning in high-stakes decisions
and new regulations postulating a “right to explanation” from
algorithmic decision-making tools [18]. Despite the perceived
trade-off between interpretability and predictive performance,
many studies with legal, financial, and healthcare applications
have demonstrated the efficacy of interpretable ML [19]–[23].

While classical machine learning models previously ap-
plied to predict appendicitis, e.g. logistic regression, could
be deemed interpretable by some audiences, a user-centered
perspective is important, and we must pay attention to the
target user of our models [24]. In the context of this study,
an integer risk score is more familiar and recognisable to a
clinical practitioner than a simple logistic model with real-
valued coefficients; and therefore, it is more likely to be
accepted and deployed in daily clinical practice.

II. METHODS

A. Data Acquisition and Preprocessing

Our analysis focuses on a publicly available dataset1 from
the Deparment of Pediatric Surgery at the tertiary Children’s
Hospital St. Hedwig in Regensburg, Germany, described in
detail by Marcinkevics et al. [14]. It contains records for
430 patients aged between 0 and 18 years, admitted with ab-
dominal pain and suspected appendicitis. The records include
38 variables, among which demographic, clinical, scoring,
laboratory, and ultrasound (US) predictors. We consider three
target variables: (i) diagnosis (appendicitis vs. no appen-
dicitis), (ii) treatment (conservative vs. surgical), and (iii)
complications (present vs. absent). Since patients who did not
undergo surgery had no confirmed diagnosis, those who were
treated with a conservative approach and had AS/PAS ≥ 4
and an appendix diameter ≥ 6 mm were assumed to have
appendicitis. Most of the considered categories are balanced,
however, only 12% of patients had a case of complicated
appendicitis.

During exploratory analysis, non-sensible values and typos,
such as negative body temperature, were removed manually

1available at https://github.com/i6092467/pediatric-appendicitis-ml

Fig. 1. End-to-end pipeline: the preprocessing consists of 4 steps. Hyper-
parameter grid search was conducted using cross-validation on the training
set. The overall performance refers to the average across the 10 withheld test
folds.

and subsequently imputed. Ultrasound variables had many
missing values (over 50%), which were imputed manually
assuming that missingness was associated with absence of
ultrasonographic observations. Continuous variables were en-
coded using 4-quantile-based discretization. Categorical vari-
ables were represented using either ordinal or one-hot encod-
ing. Remaining missing values were imputed using k-nearest
neighbors, as implemented in the Python scikit-learn package
[25].

The whole data analysis pipeline is shown in Figure 1.

B. Risk SLIM Model

Risk SLIM [26] is a sparse linear model with integral coef-
ficients designed for risk assessment. It is learnt by optimizing
the logistic loss and outputs the risk of a patient, rather than a
binary label. On the other hand, the original SLIM model [16]
optimizes the 0-1 loss and is designed for decision making,
outputting only a binary-valued label. In the clinical setting, it
is crucial to prioritize the treatment of patients based on their
risk. For this reason, risk SLIM was chosen over SLIM.

Risk SLIM solves the following optimization problem:

min
λ∈L

l(λ) + C0‖λ‖0, (1)

where the logistic loss is defined as

l(λ) =
1

N

N∑
i=1

log
(
1 + e−yiλ

>xi

)
, (2)

and the `0-norm is given by ‖λ‖0 =
∑d
j=1 1{λj 6=0}. By

minimizing the logistic loss we expect to achieve high AUROC
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TABLE II
TUNED HYPERPARAMETER VALUES FOR RISK SLIM MODELS PREDICTING

DIAGNOSIS, BASED ON THE FULL SET OF VARIABLES AND WITHOUT
ULTRASOUND, TREATMENT, AND COMPLICATIONS.

# var-s L C0 Time lim., s

Diagnosis (full) 6 {−6, ..., 6} 10−6 500
Diagnosis (w/o US) 6 {−5, ..., 5} 10−6 300
Treatment 4 {−10, ..., 10} 10−6 60
Complications 10 {−2, ..., 2} 10−6 300

and well-calibrated risk predictions. C0 is the parameter
controlling the trade-off between the logistic loss and the
sparsity of the coefficient vector λ. Finally, L ⊂ Zd+1 denotes
a set of feasible coefficients as defined by the user, e.g.
L = {−5,−4, ..., 0..., 4, 5}d+1.

Finding integer-valued sparse coefficients λ is NP-hard,
since Equation 1 is a mixed-integer linear program (MILP).
Ustun and Rudin [26] propose a new lattice cutting plane
algorithm to solve the problem described above. The running
time scales linearly to the number of data points and allows
applying risk SLIM to large datasets.

III. RESULTS

In our experiments, we apply risk SLIM to the mentioned
dataset of 430 pediatric patients to learn risk scores for the
three target variables. In addition, we compare the perfor-
mance of risk SLIM to random forests (RF) [15] in terms
of areas under receiver operating characteristic (AUROC) and
precision-recall (AUPR) curves that were reported before for
the same dataset by Marcinkevics et al. [14]. The experiments
were implemented in Python; and the original implementation
of risk SLIM was used.2

A nested 10-fold cross validation (CV) with a stratified split
was used for model hyperparameter tuning and comparison.
The hyperparameters of risk SLIM models corresponding to
the final results are reported in Table II. For random forests,
we replicated the results by Marcinkevics et al. [14] ourselves
with the scikit-learn implementation of RFs [25].

A. Comparison with Random Forests

We first evaluate the predictive performance of scores learnt
with risk SLIM and compare it with random forests. Figure 2
shows 10-fold CV results for random forests and risk SLIM
across all three target variables. We observe that risk SLIM
achieves average AUROCs and AUPRs comparable to random
forest’s performance for diagnosis and treatment. For compli-
cations, the average AUPR for risk SLIM is slightly lower than
for RFs, however, this difference is not significant given a large
standard deviation across the folds. We attribute relatively
low AUPRs for complications attained by all models to the
extremely low prevalence of complicated appendicitis cases
(12%). Overall, these results suggest that for the considered

2https://github.com/ustunb/risk-slim

Fig. 2. Performance of AS (�) and PAS (�) scores, random forests (�), and
risk SLIM (�) at predicting diagnosis, treatment assignment, and complica-
tions. We tuned the number of trees in RF, using 80, 200, and 400 estimators
for diagnosis, treatment, and complications, respectively. In addition, we
provide the expected performance of a random guess (�) as a naı̈ve baseline.
Averages and standard deviations (error bars) are reported across 10 folds in
stratified cross-validation.

simple tabular dataset, a linear regularized model, such as risk
SLIM, does not perform worse than highly flexible random
forests and thus, is a viable and more interpretable alternative.

B. Comparison with Traditional Appendicitis Scores

We now examine the performance of traditional appen-
dicitis scores. As mentioned in Section I, AS and PAS are
commonly used to assess patients with suspected appendicitis
(see Table I). Originally, Alvarado and PAS are intended
for diagnosing extreme cases of appendicitis. Therefore, it
makes no sense to use these scores to predict treatment
and complications, so we discarded these targets from the
evaluation, focusing only on diagnosis. Figure 2 shows the
performance of appendicitis scores at predicting the diagnosis
across the ten folds of CV.

The overall performance of both scores is considerably
worse than for machine learning approaches. Their low predic-
tive performance is not surprising, since these scores are only
used in practice to discard extreme cases: patients with a score
≤ 4 can be discarded and patients with a score≥ 7 are likely to
have the disease [27]. Moreover, AS and PAS are purely based
on laboratory and clinical findings and do not consider ultra-
sonographic information. To facilitate a fairer comparison, we
fit a risk SLIM score without ultrasound predictor variables.
The ultrasound-free model achieves an AUROC and AUPR of
0.85 ± 0.04 and 0.90 ± 0.03, respectively, performing worse
than the full risk SLIM score, but considerably better than
AS and PAS, both on average and in terms of variability in
performance.

To conclude, we can see that data-driven approaches which
incorporate ultrasound results offer a considerable improve-
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ment in predictive performance over the traditional appendici-
tis scores, such as AS and PAS.

C. Qualitative Results
Risk SLIM outputs scoring tables from which the score for

each patient can be easily calculated by adding small integers
if certain conditions apply. In our case, these conditions are
based on symptoms and medical findings. After calculating
the score, the associated risk can be evaluated according to
the formula, following the cumulative logistic distribution:

Patient Risk =
1

1 + eβ0−λ>xi
, (3)

wherein λ>xi corresponds to the total score of the i-th patient
and can be easily calculated by adding integer coefficients in
λ for the symptoms that the patient has. β0 is a parameter
learnt by risk SLIM and is used as a threshold in patient
classification. For example, for diagnosis (see Table III), the
model learns β0 = 7. Since having to use a calculator can be
inconvenient, especially when the health of a patient is at stake,
this step can be made easier by providing a table that converts
integral scores to risks, such as Table IV for diagnosis.

Fig. 3. RF variable importance values, given by mean decrease in accuracy,
for a few most important predictors across three responses. For predicting
diagnosis (top), the most important features are the visibility of the appendix
in the US, appendix diameter, local abdominal guarding and inflammation
signs in the tissue surrounding the appendix. For the treatment (middle),
the RF model mostly focuses on local abdominal guarding. In the case of
complications (bottom), the most relevant variable is the level of C-reactive
protein, followed by local abdominal guarding and body temperature.

The rules learnt by risk SLIM (see Table III) are in line with
the medical literature [6], [7], [28], [29], assigning highest

TABLE III
SCORING SYSTEMS OBTAINED BY RISK SLIM FOR DIAGNOSIS (top),

TREATMENT (middle), AND COMPLICATIONS (bottom).

Diagnosis (full):
Rule Score

Peritonitis generalized 6
Appendix diameter 9–17 mm 6
Appendix diameter 5.9–9 mm 5
Appendix on sonography 4
Peritonitis local 2

β0 7

Diagnosis (w/o US):
Rule Score

Peritonitis generalized 2
Peritonitis local 2
WBC count > 15.8 103/µl 2
Migratory pain 1
Weight 31.1–42.0 kg 1
Body temperature 37.0–37.4 °C 1
WBC count 11.8–15.8 103/µl 1
Neutrophil percentage 73.6–82.0% 1
CRP at entry 7.0–31.75 mg/l 1
Dysuria -1

β0 2

Treatment:
Rule Score

Peritonitis generalized 10
Peritonitis local 4
Appendix wall layers irregular 2
WBC count 15.8–33.6 103/µl 2
Appendix diameter 9–17 mm 1
Pathological lymph nodes -1

β0 3

Complications:
Rule Score

Peritonitis generalized 4
Peritonitis local 4
WBC in urine 3
Migratory pain 2
Body temperature 38.2–40.3 °C 2
CRP at entry 31.75–365.10 mg/l 2
Nausea 1
Height 138.0–150.5 cm -1
Neutrophil percentage 73.55–82.0% -1
Weight 55–98 kg -2

β0 8



TABLE IV
SCORE-TO-RISK CONVERSION TABLE FOR DIAGNOSIS (with ultrasound).
THE DOCTORS CAN EASILY CONVERT TOTAL PATIENT SCORES OBTAINED
FROM RISK SLIM CONDITIONS TO THE RISK OF HAVING APPENDICITIS.

Score 0–4 5 6 7 8 9 10–23

Risk 0.0 0.1 0.3 0.5 0.7 0.9 1.0

importance to abdominal guarding and ultrasound findings,
such as visibility and diameter of appendix. For diagnosis,
risk SLIM focuses only on abdominal guarding and ultrasound
variables in contrast to the traditional scores, which are based
on clinical findings, such as nausea, anorexia, and fever.
When predicting treatment assignment, the model associates
the abdominal guarding to a risk of surgical intervention.
High white blood cell (WBC) count, which is associated with
inflammation, is also relevant when deciding if the patient
should be treated conservatively or surgically. Interestingly,
a negative score is assigned for the presence of pathological
lymph nodes. For example, mesenteric lymphadenitis mimics
the symptoms of appendicitis [30] and if differentiated should
be accounted for in treatment assignment. For complications,
alongside with peritonitis, risk SLIM includes elevated body
temperature and high concentration of C-reactive protein at
entry. The association between the latter and complicated
appendicitis has been explored in the medical literature as well
[29]. Interestingly, the model assigns negative coefficients to
the height and body weight. This might be due to overfitting
or correlations with other clinically relevant variables, such as
BMI and age.

Figure 3 shows random forest feature importance, given by
the average decrease in accuracy upon randomly permuting the
considered feature, for all three response variables. Similar to
risk SLIM, RF relies heavily on ultrasonography for predicting
diagnosis, abdominal guarding – for treatment, and CRP
levels – for complications. While it appears that both RF
and risk SLIM utilise similar features and achieve comparable
predictive performance, scores learnt by risk SLIM are less
opaque, have a format familiar to physicians, and can be easily
computed by hand.

Comparing the full risk SLIM model to AS and PAS
(cf. Table I), the only feature common across all scores is
abdominal guarding. Whereas risk SLIM relies mostly on
ultrasonographic findings, traditional appendicitis scores were
designed for quick screening of patients and do not require
ultrasound imaging. On the other hand, the risk SLIM score
trained without US predictors is quite similar to the medical
appendicitis scores, assigning high importance to abdominal
guarding, WBC levels, fever, and neutrophilia.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we investigated the utility of interpretable
machine learning models for predicting the diagnosis, manage-
ment, and complications of appendicitis in pediatric patients.
We demonstrated that sensible and medically relevant risk

scores can be learnt using risk SLIM in a purely data-
driven manner that perform as well as random forests used
by previous researchers [14]. This resonates well with the
previous claims that interpretability does not harm predictive
performance in simple datasets and in the presence of mean-
ingful features [19]–[23].

Our models offer a significant improvement over traditional
medical scores based on expertise and hold a promise of
supporting clinical practitioners in their decisions. An impor-
tant advantage of our classifiers over the previous attempts to
leverage machine learning for appendicitis is that the simple
format of a risk score is more amenable to an average medical
doctor and is consistent with the frequently used scoring
systems like Alvarado and PAS.

The obtained scores should be validated externally and on
a more diverse set of patients from multiple clinical centers.
Note, that all of the patients in the dataset were suspected
to have appendicitis, therefore, the scoring system is limited
to the described setting and should be adapted or retrained if
applied to a wider patient population.

In the future work, we plan to investigate other interpretable
classification approaches, particularly, born-again tree ensem-
bles [31] and generalized additive models [32]. We also plan
to extend the current dataset with raw US images to leverage
recent advancements in deep learning for medical ultrasound
[33], [34].
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