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Abstract
We propose a novel anomaly detection method for
echocardiogram videos. The introduced method
takes advantage of the periodic nature of the heart
cycle to learn different variants of a variational
latent trajectory model (TVAE). The models are
trained on the healthy samples of an in-house
dataset of infant echocardiogram videos consist-
ing of multiple chamber views to learn a nor-
mative prior of the healthy population. During
inference, maximum a posteriori (MAP) based
anomaly detection is performed to detect out-of-
distribution samples in our dataset. The proposed
method reliably identifies severe congenital heart
defects, such as Ebstein’s Anomaly or Shone-
complex. Moreover, it achieves superior perfor-
mance over MAP-based anomaly detection with
standard variational autoencoders on the task of
detecting pulmonary hypertension and right ven-
tricular dilation. Finally, we demonstrate that
the proposed method provides interpretable ex-
planations of its output through heatmaps which
highlight the regions corresponding to anomalous
heart structures.

1. Introduction
Congenital heart defects (CHDs) account for about 28%
of all congenital defects worldwide (Van Der Linde et al.,
2011). CHDs manifest in several different heart diseases
with various degrees of frequency and severity, and are usu-
ally diagnosed primarily with echocardiography. Echocar-
diography is one of the most common non-invasive screen-
ing tools due to the rapid data acquisition, low cost, porta-
bility, and measurement without ionizing radiation. Early
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screening of heart defects in newborns is crucial to ensure
the long-term health of the patient (Buskens et al., 1996;
Singh & McGeoch, 2016; Van Velzen et al., 2016). However,
due to the subtlety of various heart defects and the inher-
ently noisy nature of echocardiogram video (echo) data,
a thorough examination of the heart and the diagnosis of
CHD remains a challenging and time-consuming process,
raising the need for an automated approach. Still, collecting
real-world datasets from large populations to apply state-of-
the-art supervised deep learning methods is often infeasible.
The reason is that many CHDs like Ebstein’s Anomaly,
Shone-complex, or complete atrioventricular septal defect
(cAVSD) rarely occur, making the dataset extremely imbal-
anced. On the other hand, we have access to an abundance of
echos from healthy infant hearts generated during standard
screening procedures, often performed on infants shortly
after birth.

In this work, we introduce a novel anomaly detection
method to identify a variety of CHDs. The proposed
approach learns a structured normative prior of healthy
newborn echos using a periodic variational latent trajec-
tory model. At test time, the method can detect out-of-
distribution samples corresponding to CHDs. The advan-
tage of this approach is that the model is trained purely
on healthy samples, eliminating the need to collect large
amounts of often rarely occurring CHDs.

In anomaly detection, we assume that all data is drawn from
a space X with some probability density pH . Anomalies
are then defined to be samples drawn from low probability
regions of X under pH . More formally, an anomaly space
A ⊂ X under density pH and anomaly threshold τ ≥ 0 is
defined by

A = {x ∈ X ; pH(x) ≤ τ}
Note that τ is a task-specific measure, as the definition of
anomaly can vary drastically over different problem settings.
Consequently, most anomaly detection algorithms assign
anomaly scores rather than discriminating between normal
and anomalous samples.

In this work we focus on reconstruction-based approaches,
which encompass some of the most widespread methods for
anomaly detection (Chalapathy & Chawla, 2019; Ruff et al.,
2021; Pang et al., 2021). This family of methods aims to
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learn generative models that can reconstruct normal sam-
ples well but decrease in performance for anomalous inputs.
A given measure αf (x) that quantifies the reconstruction
quality achieved by model f when given sample x can then
be interpreted as the anomaly score of x. The models are
commonly trained on healthy samples, and during inference,
an anomalous sample xa is assumed to get projected into
the learned normal latent space. This effectively leads to
high reconstruction errors, resulting in high anomaly scores
αf (xa). More recently, (Chen et al., 2020) proposed a vari-
ation of the reconstruction-based approach that allows us
to incorporate prior knowledge on anomalies during infer-
ence by detecting anomalies using a maximum a posteriori
(MAP) based approach. However, this approach requires an
estimate of the log-likelihood, which restricts model choice
to generative models such as variational autoencoders (VAE
Kingma & Welling (2013)).

Although various generative architectures have been pro-
posed in the literature, little effort has been directed to-
ward echocardiogram videos. One exception is the work
of Laumer et al. (2020), where the authors introduced a
model that specifically targets the periodicity of heartbeats
for ejection fraction prediction and arrhythmia classification.
However, the model enforces rather restrictive assumptions
on the heart dynamics and is purely deterministic in nature.
In contrast, we propose a variational latent trajectory model
that overcomes the simplistic assumptions of previous ap-
proaches and learns a distribution over dynamic trajecto-
ries, enabling the detection of different types of CHDs in
echocardiograms using the MAP approach. Furthermore,
the proposed algorithm allows us to explain predictions by
producing heatmaps that highlight regions corresponding
to detected anomalies, which ultimately helps clinicians in
building trust in the proposed approach. We provide the
code to our models on GitHub1.

To summarize, the contributions of this paper are the follow-
ing:

1. We propose a novel variational latent trajectory model
(TVAE) for reconstruction-based anomaly detection on
echocardiogram videos.

2. We perform extensive evaluation of the proposed
method on the challenging task of CHD detection in a
real-world dataset.

3. We complement our predictions with decision
heatmaps, which highlight the regions of the echocar-
diograms corresponding to anomalous heart structures.

1https://github.com/alain-ryser/tvae

2. Related Work
The rapid data acquisition, the high observer variation in
their interpretation, and the non-invasive technology have
made echocardiography a suitable data modality for an abun-
dance of machine learning algorithms. In recent years, a
variety of algorithms for segmentation (Dong et al., 2016;
Moradi et al., 2019; Leclerc et al., 2019), view classification
(Gao et al., 2017; Vaseli et al., 2019) or disease prediction
(Madani et al., 2018; Kwon et al., 2019) have been proposed.
However, their performance often relies on the assumption
that a large labeled dataset can be collected. This assump-
tion does not hold for rare diseases, where the amount of
collected data is often too scarce to train a supervised al-
gorithm. Hence, reconstruction-based anomaly detection
algorithms could be used in such a setting, but their applica-
tion to echocardiography is, to the best of our knowledge,
left unexplored.

Previous work on reconstruction based anomaly detection
are often based on generative models, such as autoencoders
(AE) (Principi et al., 2017; Chen et al., 2017; Chen &
Konukoglu, 2018; Pawlowski et al., 2018) or variational
autoencoders (VAE Kingma & Welling (2013)) (An & Cho,
2015; Park et al., 2018; Xu et al., 2018; Cerri et al., 2019;
You et al., 2019). Their application to the medical domain
is mostly limited to disease detection in MRI (Baur et al.,
2018; Chen & Konukoglu, 2018; Baur et al., 2020; Chen
et al., 2020; Baur et al., 2021; Pinaya et al., 2021), where
anomalies are often easily detectable as they are clearly de-
fined by regions of tissue that contain lesions. On the other
hand, pathologies of CHDs in echos are largely heteroge-
neous and usually cannot be described by unique structural
differences from healthy echos. Identifying them is often
challenging, as they can be caused by small perturbations of
ventricles (ventricular dilation) or subtle malfunctions like
pressure differences between chambers in certain phases
of the cardiac cycle (pulmonary hypertension). Detecting
certain CHDs thus requires the inclusion of temporal struc-
tures in addition to the spatial information leveraged in MRI
anomaly detection.

Different extensions to AE/VAE have been proposed to
perform reconstruction-based anomaly detection methods
on video data (Xu et al., 2015; Hasan et al., 2016; Yan
et al., 2018). However, these methods are often designed
for abnormal event detection, where anomalies can arise
and disappear throughout the video. On the other hand, we
are interested in whether a given video represents a healthy
or anomalous heart. Another method for video anomaly
detection is future frame prediction (Liu et al., 2018), which
trains models to predict a video frame from one or more
previous ones. During inference, it is assumed that such
a model achieves better performance on normal than on
anomalous frames. Recently, (Yu et al., 2020) proposed

https://github.com/alain-ryser/tvae


Interpretable Anomaly Detection in Echocardiograms

a method that combines reconstruction and future frame
prediction-based approaches in one framework. Though
achieving good performance on videos with varying scenes,
future frame prediction does not seem suitable for echos
as returning any input frame will always lead to good pre-
diction scores due to the periodic nature of the cardiac cy-
cle. An entirely different approach to anomaly detection is
given by One-Class Classification (Moya & Hush, 1996).
In contrast to the previous approaches, the latter relies on
discriminating anomalies from normal samples instead of
assigning an anomaly score. This is usually achieved by
learning a high-dimensional manifold that encloses normal
data. The surface of this manifold then serves as a decision
boundary that discriminates anomalies from normal sam-
ples. One of the more prominent methods of that family
is the so-called Support Vector Data Description (SVDD)
(Tax & Duin, 2004) model. The SVDD learns parameters
of a hypersphere that encloses the training data. Similar to
SVMs, it provides a way to introduce some slack into the
estimation process, allowing certain normal samples to lie
outside the decision boundary. A similar approach is given
by the One-Class SVMs (OC-SVM) (Schölkopf et al., 2001),
where anomalies are discriminated from normal samples
by learning a hyperplane instead of a hypersphere. Like
with SVMs, the expressivity of SVDD and OC-SVM can
be drastically improved by introducing kernelized versions
(Ratsch et al., 2002; Ghasemi et al., 2012; Dufrenois, 2014;
Gautam et al., 2019). More recently, deep neural networks
have been proposed to perform anomaly detection based on
similar principles (Ruff et al., 2018; Sabokrou et al., 2018;
Ruff et al., 2020; Ghafoori & Leckie, 2020). While concep-
tually interesting, One-Class Classification methods often
require large amounts of data to work accurately, making
them unsuitable in many clinical applications.

3. Methods
In this work, we propose a probabilistic latent trajectory
model to perform reconstruction-based anomaly detection
on echocardiogram videos. We take inspiration from la-
tent trajectory models (Louis et al., 2019; Laumer et al.,
2020) and introduce the trajectory variational autoencoder
(TVAE), which learns a structured normative distribution
of the heart’s shape and dynamic. In particular, the model
encodes the echos into stochastic trajectories in the latent
space of a VAE, enabling us to accurately generate high-
quality reconstructions while maintaining a low dimensional
latent bottleneck. We present three different TVAE variants.
The TVAE-C and TVAE-R leverage trajectories that assume
strict periodic movements of the heart, while TVAE-S is
more general and allows shifts in the spatial representation
throughout the video, improving the quality of the norma-
tive prior. The learned approximate distribution of healthy
hearts then allows us to detect anomalies post-hoc using a

maximum a posteriori (MAP) approach (Chen et al., 2020).
High-quality normative reconstructions and informative la-
tent representations are essential to detect out-of-distribution
echos correctly.

3.1. Latent Trajectory Model

The latent trajectory model (Laumer et al., 2020) is an au-
toencoder that is designed to learn latent representations
from periodic sequences of the heart, i.e. echos in this
case. The main idea is to capture the periodic nature of
the observed data by learning an encoder φ that maps an
echo X := (~x(j), t(j))Tj=1 with frames ~x(j) ∈ Rw×h at
time points t(j) to a prototypical function ~̀circular(t;φ(X))
whose parameters contain information about the heart’s
shape and dynamic. The decoder ψ reconstructs the original
video frame by frame from the latent embedding ~̀circular
with ~̃x(j) = ψ(~̀circular(t

(j);φ(X))). Here, ~̀circular corre-
sponds to the following cyclic trajectory:

~̀
circular(t; f, ω,~b) =


cos(2πft− ω) + b1
sin(2πft− ω) + b2

b3
...
bd

 ,

where the frequency parameter, f > 0, corresponds to the
number of cycles per time unit, and the offset parameter
ω ∈ [0, 2π] allows the sequence to start at an arbitrary point
within the (cardiac) cycle. The parameter ~b ∈ Rd charac-
terizes the spatial information of the signal. This model
thus describes a simple tool to learn the disentanglement
of temporal components (f , ω) from a common spatial rep-
resentation (~b) for a given echo. On the other hand, the
assumptions made may be too simplistic to result in good
reconstructions. We will address this issue in the following
sections.

3.2. Dynamic Trajectories

The above formulation, ~̀circular, allows modeling time-
related information only through the first two latent dimen-
sions, thereby limiting the amount of time-dependent in-
formation that can be encoded in the latent space. The
reduced flexibility results in insufficient reconstruction qual-
ity, impairing the reconstruction-based anomaly detection
performance. To circumvent this problem, we distribute
time-dependent components over each dimension of the la-
tent space while retaining the periodicity. We thus define
the rotated trajectory function ~̀rot as
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Figure 1. Overview of the model architecture with ~̀circular (left), ~̀rot (middle) and ~̀spiral (right).

~̀
rot(t; f,ω,~b) =

cos(2πft− ω)− sin(2πft− ω) + b(1)

cos(2πft− ω) + sin(2πft− ω) + b(2)

...
cos(2πft− ω) + sin(2πft− ω) + b(d)

 .

Furthermore, in real-world applications, it is often the case
that doctors change certain settings of the echocardiogram
machine during screening to get better views of certain car-
diac structures. Additionally, some patients might slightly
move while scans are performed, which leads to a displace-
ment of the heart with respect to the transducer position
throughout an echo recording. This is particularly promi-
nent in our in-house dataset, which consists of echocardio-
grams of newborn children. Such echocardiograms are not
necessarily well represented with a simple periodic trajec-
tory. Over multiple cycles, the spatial structure of a sample
shifts and looks different than in the beginning, even though
temporal information like the frequency or phase shift is
preserved. The trajectory model described by ~̀rot thus fails
in such scenarios, which can manifest in two different ways:
either the model incurs a local optima with high reconstruc-
tion error, or the model reconstructs the video from one
long cycle, hence not leveraging the heart cycle periodicity.
Thus, to account for movements of the recording device, we
extend ~̀rot with a velocity parameter v ∈ R that allows the
model to learn gradual shifts of the latent trajectory over
time, resulting in a trajectory that is no longer circular but a
spiral embedded in high dimensional space. More formally,
we define the spiral trajectory function as

~̀
spiral(t; f, ω, v,~b)i = ~̀

rot(t; f, ω,~b)i + tv

3.2.1. VARIATIONAL FORMULATION

Previous work often applied VAEs to anomaly detection, as
its generative nature enables more sophisticated variants of
reconstruction-based anomaly detection (Baur et al., 2018;
Xu et al., 2018; Chen et al., 2020). Thus, we extend the
presented model with a stochastic layer and introduce the
variational latent trajectory model.

We modify the encoder φ(X; θ) such that it outputs tra-
jectory parameters v, f, ω ∈ R and ~µb, ~σb ∈ Rd. The
model is then extended with a stochastic layer by defining
~b ∼ qθ(·|X) := N ( ~µb, diag( ~σb)). While we aim to learn a
distribution over heart shapes, we would also like to accu-
rately identify the frequency f , phase shift ω, and spatial
shift v given an echo video X , instead of sampling them
from a latent distribution. We thus leave those parameters
deterministic. Next, we define an isotropic Gaussian prior
p(~b) := N (0, I) on~b and assume that

x(i) ∼ pη(X|~b, f, ω, v)
:= N (ψ(~̀spiral(t

(i); f, ω, v,~b); η), σI),

where ψ is our decoder with weights η and σ is some fixed
constant. Given these assumptions, we are able to derive the
following evidence lower bound (ELBO):

ELBO(X) :=

Eqθ(~b|X)[log(pη(X|~b, φf (X), φω(X), φv(X)))]

−KL[qθ(~b|X)||p(~b)].

Here, φf (X), φω(X) and φv(X) are the trajectory param-
eter outputs of the encoder φ for f, ω and v, respectively.
Note that VAEs on ~̀circular and ~̀rot are defined in a sim-
ilar fashion. A derivation of this ELBO can be found in
Appendix A.
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3.2.2. ANOMALY DETECTION

The variational formulation of the latent trajectory model
allows us to perform anomaly detection by Maximum a Pos-
teriori (MAP) inference as proposed in Chen et al. (2020).
The authors suggest that anomalies can be modeled as an
additive perturbation of a healthy sample. Following their
reasoning we define:

XH := (~x
(j)
H , t(j))Tj=1 ∼ H

Y := (~y(j), t(j))Tj=1 ∼ D

A := (~a(j), t(j))Tj=1,

whereH is the healthy data distribution, D the overall data
distribution (i.e., including anomalies) and A the anomalous
perturbation. We then assume that

~y(j) = ~x
(j)
H + ~a(j).

In the case of CHD, A could, e.g., remove walls between
heart chambers or produce holes in the myocardium for
specific frames. The anomaly score α can then be defined
as α(Y ) := 1

T

∑T
j=1 ‖~a(j)‖22. When training on healthy

samples only, i.e. ~a(j) = 0 for all j ∈ {1, ..., T}, the
variational latent trajectory model learns to approximate
P (XH) by maximizing ELBO(XH). We then use the
MAP estimation to approximate the posterior distribution
of XH given a sample Y . Hence, by using Bayes’ theorem

P (XH |Y ) ∝ P (Y |XH)P (XH),

we can estimate XH as follows:

X̃H = argmax
XH

(log(P (Y |XH)) + ELBO(XH)),

where we use the concavity of the logarithm and the fact
that log(P (XH)) ≥ ELBO(XH). Next, we compute
~̃a(j) = ~y(j) − ~̃x

(j)
H and calculate the anomaly score as

α(Y ) := 1
T

∑T
t=1 ‖~̃a(t)‖22. Similar to (Chen et al., 2020),

we choose logP (Y |X) = ‖(~x(j) − ~y(j))Tj=1‖TV , where
‖ · ‖TV denotes the Total Variation norm in `1, as this lever-
ages the assumption that anomalies should consist of con-
tiguous regions rather than single pixel perturbations. Note
that since we have a temporal model, we can incorporate
temporal gradients into the TV norm, i.e.,

‖X‖TV :=

w∑
i=1

h∑
j=1

T∑
k=1

‖∇~x(k)ij ‖1.

In our experiments, we approximate gradients by

∇~x(k)ij ≈


~x
(k)
(i+1)j − ~x

(k)
(i−1)j

~x
(k)
i(j+1) − ~x

(k)
i(j−1)

~x
(k+1)
ij − ~x(k−1)ij

 .

4. Experiments
All experiments are conducted on a novel in-house dataset
of echocardiograms of newborns. We perform three sepa-
rate anomaly detection tasks, namely detecting severe struc-
tural defects (SSD), right ventricular dilation (RVDil), or
pulmonary hypertension (PH). For each task, we define sam-
ples that do not contain the respective lesion as part of the
normal distribution. We perform all anomaly detection tasks
on both the apical four-chamber (4CV) and the parasternal
long-axis (PLAX) view. Videos were preprocessed and re-
sampled such that they consist of 25 frames. More details
on the collected dataset and preprocessing can be found in
Appendix B.

In addition to the variational latent trajectory models
with the circular (TVAE-C), rotated (TVAE-R), and spiral
(TVAE-S) trajectories described in Section 3.1, we train a
standard variational autoencoder (Kingma & Welling, 2013)
model on the individual video frames of the dataset as a
baseline. We present an outline of the model architecture
in Figure 1 and refer to Appendix C for a more detailed
description of the network.

We run experiments by training the models exclusively on
samples that do not contain the corresponding CHD to learn
the normative prior. Each experiment is trained on 10 sep-
arate data splits, where we leave out the respective anoma-
lous samples, 30 healthy samples for PH and RVDil, and 7
healthy samples for SSD to evaluate on test time.

4.1. Reconstruction

The reconstruction quality is directly related to
reconstruction-based anomaly detection performance, as we
rely on the manifold and prototype assumptions formalized
in (Ruff et al., 2021). The manifold assumption is often
used in many machine learning-based applications and
states that X , the space of healthy echos, can be generated
from some latent space Z by a decoding function ψ and
that it is possible to learn a function φ that encodes X into
Z . The better a function f(x) := ψ(φ(x)) reconstructs x
on a test set, the better we match the manifold assumption.
On the other hand, the prototype assumption assumes that
there is some set of prototypes that characterizes the healthy
distribution well. In our case, the prototypes would be
echos corresponding to healthy hearts, i.e., a subset of X .
Under the prototype assumption, our model f must be able
to assign a given sample to one of the learned prototypes,
i.e., project anomalies to the closest healthy echo.

Table 1 contains the scores of the VAE, TVAE-C, TVAE-R,
and TVAE-S. We report the Mean Squared Error (MSE),
Peak Signal to Noise Ratio (PSNR), and Structural Sim-
ilarity Index Measure (SSIM). We observe that TVAE-C
has consistently higher MSE and SSIM errors and lower
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Table 1. Apical 4-chamber view reconstruction performance on test data of the proposed approaches (TVAE-C, TVAE-R and TVAE-S)
compared with the baseline (VAE). Means and standard deviations are computed across 10 validation splits.

VAE TVAE-C TVAE-R TVAE-S

SSD
MSE 0.013±0.0 0.014±0.0 0.014±0.0 0.013±0.0
PSNR 19.008±0.11 18.574±0.15 18.58±0.13 18.774±0.09
SSIM 0.545±0.01 0.544±0.01 0.545±0.01 0.552±0.01

RVDil
MSE 0.012±0.0 0.014±0.0 0.013±0.0 0.013±0.0
PSNR 19.146±0.05 18.7±0.07 18.82±0.08 18.803±0.04
SSIM 0.555±0.0 0.549±0.0 0.554±0.0 0.555±0.0

PH
MSE 0.012±0.0 0.014±0.0 0.014±0.0 0.014±0.0
PSNR 19.084±0.07 18.66±0.07 18.723±0.08 18.727±0.07
SSIM 0.552±0.0 0.55±0.0 0.551±0.0 0.553±0.0

(a) Healthy reconstructions

(b) SSD reconstructions

Figure 2. Examples of healthy (a) and SSD (b) samples (first and
third rows) and their reconstructions (second and fourth rows)
using the TVAE-S model. We sample 3 frames from each echo’s
25 frame long sequences.

PSNR than both TVAE-R and TVAE-S. Upon inspection of
the reconstructed test videos we notice that, for most seeds,
TVAE-C converges to a local optimum where the model
learns mean representations of the input videos, thus ignor-
ing the latent dimensions containing temporal information,
as described in Section 3. On the other hand, we did not ob-
serve this behavior in TVAE-R and TVAE-S, suggesting that
these models indeed capture dynamic properties of echos
through the learned latent representations. Additionally,
TVAE-S achieves good echo reconstructions even for sam-
ples with transducer position displacement, improving upon
TVAE-R and achieving similar performance as VAE despite
having a smaller information bottleneck. The proposed ap-

Figure 3. Projection of 4CV view anomalous echo (top) to healthy
prototype (bottom). Projections of right (R) and left (L) ventricle
(V) and atrium (A) are highlighted in color. The reconstruction of
SSD samples approximates a healthy version of the input, e.g., by
normalizing the scale of the right and left ventricles (left), adding
the ventricular septum (middle), or fixing the location of the valves
(right).

proaches, TVAE-C, TVAE-R, and TVAE-S, encode videos
into d+2 or d+3 trajectory parameters respectively, while
the VAE encodes each individual frame in Rd, resulting in
a total of 25× d latent parameters. In conclusion, TVAE-S
and the standard VAE fulfill the manifold assumption simi-
larly well. Figure 2 presents reconstructed healthy and SSD
samples for the 4CV and PLAX echo views.

In Figure 3, we qualitatively demonstrate that TVAE sat-
isfies the prototype assumption. We observe how the per-
turbed septum and enlarged/shrunken heart chambers of
SSD anomalies are projected to healthy echo reconstruc-
tions.

Appendix D provides additional reconstructions and a com-
prehensive performance comparison of the deterministic
and variational models for the 4CV and PLAX echo views.
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Table 2. Anomaly detection performance in terms of area under the curve and average precision of the proposed approaches (TVAE-C,
TVAE-R, and TVAE-S) compared with the baseline (VAE) on the four-chamber view and long-axis view for the three different CHD
labels. Means and standard deviations are computed on the test sets across 10 data splits. The anomalous echos are considered as the
positive class. AP scores of a random classifier are 0.58 (SSD), 0.72 (RVDil), and 0.72 (PH).

SSD RVDil PH
AUROC AP AUROC AP AUROC AP

4CV

VAE 0.645±0.08 0.667±0.08 0.477±0.05 0.715±0.05 0.498±0.05 0.722±0.03
TVAE-C 0.913±0.09 0.916±0.11 0.6±0.05 0.762±0.04 0.612±0.05 0.786±0.04
TVAE-R 0.917±0.05 0.928±0.05 0.594±0.07 0.771±0.04 0.629±0.08 0.797±0.06
TVAE-S 0.868±0.05 0.892±0.05 0.595±0.03 0.774±0.02 0.649±0.06 0.794±0.05

PLAX

VAE 0.628±0.14 0.457±0.07 0.455±0.05 0.702±0.03 0.432±0.04 0.695±0.03
TVAE-C 0.87±0.1 0.811±0.15 0.599±0.07 0.794±0.04 0.631±0.05 0.818±0.03
TVAE-R 0.877±0.08 0.826±0.1 0.61±0.04 0.794±0.02 0.629±0.06 0.817±0.03
TVAE-S 0.914±0.09 0.876±0.14 0.592±0.05 0.791±0.03 0.636±0.05 0.821±0.02

4.2. Anomaly Detection

As described in Section 3.2.2, we detect anomalies by MAP
estimation:

X̃H = argmax
XH

(log(P (Y |XH)) + ELBO(XH))))

Due to the reconstruction loss in the ELBO, this optimiza-
tion problem requires us to backpropagate through the whole
model in every step. As a result, inference with the stan-
dard MAP formulation is inefficient and proved infeasible
for our experiments. To circumvent this problem, we as-
sumed the reconstruction part of the ELBO to be constant
and solely balanced the posterior with the KL-Divergence
of the encoded~b, i.e., how well XH is mapped to a standard
Gaussian, thus computing

X̃H = argmax
XH

(P (Y |XH)−KL[q(~b|XH)||p(~b)])

Solving this optimization procedure results in only back-
propagating through the encoder instead of the whole model,
which leads to a significant speedup.

To optimize this objective we initialize X̃H with the recon-
structions computed by the respective model, i.e. X̃(0)

H =
f(Y ) for model f and input Y . We then solve the infer-
ence problem with the Adam optimizer, incorporating a
learning rate of 0.01 and taking 100 optimizer steps per
sample. Additionally, we weight the TV norm with a fac-
tor of 0.001. For each sample Y , we define the anomaly
score α(Y ) := 1

T

∑T
t ‖~̃a(j)‖22 as described in Section 3.2.2.

Anomaly detection performance is then evaluated in terms
of the Area Under the Receiver Operator Curve (AUROC)
and Average Precision (AP) when considering the anoma-
lies as the positive class. In Table 2, we provide a complete
overview of the results of the anomaly detection experiments
over both views.

We observe that the proposed approaches outperform the
VAE in all experiments. Especially when detecting SSD

anomalies, our models TVAE-C, TVAE-R, and TVAE-S
have significantly better performance than the standard
VAE. We also note that, despite outperforming TVAE-C
and TVAE-R in terms of reconstruction quality, TVAE-S
does not always perform better in the anomaly detection
task. We explain the score discrepancies between SSD and
RVDil/PH by the fact that SSDs deviate considerably from
the healthy distribution. On the contrary, RVDil and PH
are more subtle and require expert knowledge and several
echocardiogram views to be detected in practice.

Additionally, even though the TVAE variations have con-
siderably fewer latent parameters (d + 2/d + 3) than the
VAE (25d), they achieve similar reconstruction quality per-
formance as demonstrated in Section 4.1. In case of VAE,
this gives the optimizer more flexibility when solving the
MAP problem since the frames of X̃H can be updated in-
dependently to encode them on Gaussian parameters close
to N (0, I), which may result in overfitting during MAP
estimation.

Another reconstruction based inference method approach
where we simply defineαf (X) over the MSE, i.e. αf (X) =
1
T

∑T
j=1 ‖(x(j)−(f(X))(j))‖22, is presented in Appendix E.

4.3. Decision Heatmaps

In this experiment, we present how the estimated anomaly
perturbation Ã can be applied to highlight anomalous re-
gions. Intuitively, anomalous regions of input echos Y dif-
fer more substantially from its healthy projection XH than
healthy regions. Consequently, this leads to higher magni-
tude values in the corresponding locations in the frames of
Ã. In turn, we are able to compute an anomaly heatmap by
temporally averaging the estimated anomaly perturbation
with 1

T

∑T
j=1 ~̃a

(j). In Figure 4, we present examples of such
maps for each TVAE variation. We observe that TVAE not
only has consistently low magnitude responses for healthy
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(a) Healthy (b) Anomalous

Figure 4. Anomaly response maps of TVAE-R and TVAE-S for healthy samples (a) and echos with CHDs (b). Note how healthy heatmaps
are mostly constant, while anomalous maps contain regions with high responses in anomalous regions, corresponding to enlarged ventricles
(first/second) or perturbed septums (third/fourth).

echos, but regions corresponding to, e.g., enlarged cham-
bers, are well highlighted in the echos with CHDs. These
heatmaps provide TVAE with an additional layer of inter-
pretability and could foster the integration of the proposed
algorithm in clinical settings, as the reason for the decisions
made by TVAE can easily be interpreted by clinicians. This
helps practitioners build trust in the model’s decisions and
provides a more intuitive explanation of its outputs. More
examples of decision heatmaps are provided in Appendix F.

5. Discussion
In this work, we introduce the TVAE; a new generative
model designed explicitly for echocardiogram data. We pro-
pose three variants of the model, the TVAE-C and TVAE-R,
which make strong assumptions about the periodicity of
the data, and the TVAE-S, which can handle more dynamic
inputs. Throughout this work, we compared the proposed ap-
proach to the VAE in terms of its reconstruction performance
and anomaly detection capabilities in a new in-house echo
dataset consisting of two different echo views of healthy
patients and patients suffering from various CHD. In exhaus-
tive experiments, we demonstrated how TVAE can achieve
reconstruction quality comparable to VAE while having
a significantly smaller information bottleneck. Addition-
ally, we verified that the proposed model can project out-of-
distribution samples, i.e., patients suffering from CHD, into
the subspace of healthy echos when learning normative pri-
ors and concluded that TVAE fulfills crucial assumptions for
reconstruction based anomaly detection. Consequently, we
evaluated CHD detection performance of our model, where

we showed that it leads to a considerable improvement over
frame-wise VAE with MAP-based anomaly detection. Fur-
thermore, we demonstrated how TVAE can separate SSD
anomalies almost perfectly from healthy echos. Finally, we
present the ability of this model to not only detect but also
localize anomalies with heatmaps generated from the MAP
output, which could help clinicians with the diagnosis of
CHDs.

Limitations and Future Work Even though we observe
convincing results for SSD, performance for the detection
of RVDil and PH is still insufficient for clinical application.
This is not unexpected given that these defects are rather
subtle and our relatively small in-house dataset. It would
thus be interesting to apply the proposed approach to dif-
ferent and larger cohorts. In the future, we plan to collect
more samples for our in-house dataset. With a more exten-
sive dataset at hand, we look forward to exploring methods
that would allow combinations of TVAE with one class
classification or future frame prediction methods to achieve
more robust anomaly detection in echocardiography-based
disease detection.

The spiral trajectory of the TVAE-S model assumes con-
tinuous movement over the video and might thus still be
limiting in situations where sudden movement occurs. Inves-
tigating accelerating trajectories could thus be an interesting
direction. Further, we want to extend the TVAE to multiple
modalities such that it is possible to train a model that learns
a coherent latent trajectory of multiple echo views of the
same heart. As future work, we are also interested in ex-
tending the TVAE to different types of medical modalities
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by designing trajectory functions that leverage modality-
specific characteristics.
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A. Variational Trajectory Model ELBO derivation

Recall that we define ~b ∼ qθ(~b|X) := N ( ~µb, diag( ~σb)) with prior p(~b) := N (0, I), while leaving the other trajectory
parameters deterministic. Note that this effectively means that we define uniform priors p(f), p(ω) and p(v) over their
support, while having posteriors

qθ(f |X) := δφf (X)(f), qθ(ω|X) := δφω(X)(ω), qθ(v|X) := δφv(X)(v)

where δy is the Dirac Delta spiking at y and φf (X), φω(X) and φv(X) are the trajectory parameter outputs of the encoder
φ with weights θ for f, ω and v respectively.

Given input sample x and latent z, recall that VAEs aim to maximize the Evidence LOwer Bound (ELBO):

Eqθ(z|x)[log(pη(x|z))]−KL[qθ(z|x)||p(z)]

Here, x corresponds to the input echocardiogram X := ( ~x(j), t(j))Tj=1 whereas z := (~b, f, ω, v).

Note that~b, f, ω and v are conditionally independent, i.e.

qθ(~b, f, ω, v|X) = qθ(~b|X)qθ(f |x)qθ(ω|X)qθ(v|X)

The KL divergence is additive for joint distributions of independent random variables, i.e. for P = (P1, P2) and Q =
(Q1, Q2), where P1, P2, Q1 and Q2 are independent, it holds that

KL(P ||Q) = KL(P1||Q1) +KL(P2||Q2)

We can thus rewrite the ELBO as

Eqθ(~b,f,ω,v|X)[log(pη(X|~b, f, ω, v))]

−KL[qθ(~b|X)||p(~b)]−KL[qθ(f |X)||p(f)]
−KL[qθ(ω|X)||p(ω)]−KL[qθ(v|X)||p(v)]

Since we assumed a uniform prior for f, ω and v, their KL-Divergence terms become constant under the Dirac Delta
distribution. We can thus ignore the respective terms in the ELBO during optimization as they do not change the result of
the argmax.

Additionally, since ∫
δy(x)f(x)dx = f(y)

we can rewrite the ELBOs reconstruction term as

Eqθ(~b,f,ω,v|X)[log(pη(X|~b, f, ω, v))]

=

∫
δφf (X)(f)δφω(X)(ω)δφv(X)(v)qθ(~b|X) log(pη(X|~b, f, ω, v))d~bdfdωdv

=

∫
qθ(~b|X) log(pη(X|~b, φf (X), φω(X), φv(X)))d~b

= Eqθ(~b|X)[log(pη(X|~b, φf (X), φω(X), φv(X)))]

Finally, this leads to the following reformulation of the ELBO objective:

Eqθ(~b|X)[log(pη(X|~b, φf (X), φω(X), φv(X)))]−KL[qθ(~b|X)||p(~b)]

B. Cohort Examples
The dataset for this study consists of echos of 192 newborns and infants up to one year of age collected between 2019
and 2020 at a single center by a single pediatric cardiologist. All examinations were performed with the GE Logic S8
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Table 3. Cohort Statistics

Feature Statistic
No. of Patients 192
No. of Patients with no CHD 69
No. of Patients with SSD 5
No. of Patients with PH 73
No. of Patients with RVDIL 73
Age (Days) (Mean± SD) 34± 48
Time until birth (Days) (Mean± SD) 232± 46
Weight (Gramms) (Mean± SD) 2774± 1227
Manufacturer (Ultrasound Machine / Transducer) GE Logic S8 / S4-10 at 6 MHz
Original Video Size (pixel×pixels) 1440× 866
Video length (frames) (Mean± SD) 122± 7
Video FPS 25 fps

ultrasound machine and contain 2D video sequences of at least 2 standard echo views, i.e., apical 4-chamber view (4CV)
and parasternal long-axis view (PLAX). Of the 192 patients, 123 suffer from, potentially multiple, CHDs, and 69 are healthy.
See Table 3 for more details.

In order to evaluate anomaly detection performance, the dataset was labeled in three different categories by a pediatric
cardiologist. These include Pulmonary Hypertension (PH), Right Ventricular Dilation (RVDil) and Severe Structural Defects
(SSD). While PH and RVDil are well-defined pathologies, SSD was defined as a category of multiple rare but severe
CHD pathologies, including Ebstein’s anomaly, anomalous left coronary artery origin from pulmonary artery (ALCAPA),
atrio-ventricular discordance, and ventricular-artery concordance (AVD-VAC), Shone-complex, total anomalous pulmonary
venous drainage (TAPVD), tetralogy of fallot (ToF) and complete atrioventricular septal defect (cAVSD). We illustrate
examples for healthy, SSD, PH, and RVDil echos of both 4CV and PLAX views in Figure 5.

The collected echocardiograms were preprocessed by resizing them to 128×128 pixels. Additionally, histogram equalization
was performed to increase the contrast of the frames, and pixel values were normalized to the range [0, 1]. For video inputs,
we assume that any heart anomaly should always be visible for a certain period over the heart cycle. It thus suffices to have
a model that reconstructs only a fixed number of video frames, as long as at least one heart cycle is present in the video.
The collected videos are recorded with 24 frames per second (FPS), and we assume that a heart beats at least 30 times a
minute. Therefore, we decided to subsample the video frequency to 12 FPS and reconstruct videos with a fixed length
of 25 frames, which is enough to capture at least one cycle in every video. Hence, the input for video models consists of
25 concatenated consecutive frames of the subsampled video. Having fixed length inputs enables us to implement more
efficient architectures.

As in most clinical applications, the scarcity of the data often leads to overfitting. To prevent this, we apply data augmentation
during training by transforming samples with random affine transformations, brightness adjustments, gamma corrections,
blurring, and the addition of Salt and Pepper noise before performing the forward pass.

C. Architecture
As described in Appendix B, video inputs consist of 25 concatenated frames (x(i), t(i)) with timestamps t(i). Hence, we can
treat video frames like different channels of an image, and pass them to a residual (He et al., 2016) encoder backbone. Each
frame (x(i), t(i)) is then individually decoded by passing ~̀circular(t(i)), ~̀rot(t(i)) or ~̀spiral(t(i)) to a deconvolution (Zeiler
et al., 2010) based decoder. To train the VAE, we used identical encoder and decoder architectures, only changing the first
layer to take a single grayscale channel instead of 25 frames and adapting latent fully connected layers to match dimensions.
We provide schematics for the building blocks of our architectures in Figure 6 and describe the encoder/decoder architecture
of our experiments in Figure 7.

Table 4 contains the hyperparameters used in our experiments. Except for the number of steps, we kept hyperparameters
mostly the same for all models. This is because, in contrast to the frame-wise models, TAE and TVAE models required
more steps to converge. We suspect this is because the dimensionality of the input is 25 times larger, and the model thus
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Table 4. Hyperparameters chosen across our experiments.
Hyperparameter AE/VAE TAE/TVAE
Latent Dimension 64 66/67

(b:64; f:1; ω:1; v:1)
Batch Size 128 64
Steps 5000 106500
Number of Frames 1 25
Optimizer Adam Adam
Learning Rate 10−4 10−4

Reconstruction Loss MSE MSE
VAE β 1 1

requires more parameter updates to converge to a suitable optima that results in good reconstructions. Batch size was
chosen according to GPU memory capacity. All models are pretrained on the EchoDynamic dataset to speed up training
convergence (Ouyang et al., 2020).

D. Further Reconstruction Experiments
In addition to the reconstruction quality experiments provided in Section 4.1, we compared the performance of the variational
models to deterministic ones (i.e., standard autoencoder and non-variational trajectory models). As seen in Table 5, the
deterministic trajectory models result in a similar performance to the variational models and are even slightly better with
respect to the structural similarity score. Even though trained on the same architecture and for the same number of steps as
the VAE, the autoencoder did not produce very good reconstruction scores in this experiment. We suspect that this may be
an artifact of overfitting due to the small training set.

We provide more reconstructions of TVAE-S in Figure 8.

E. Reconstruction error based anomaly detection
A common alternative to MAP-based anomaly detection is the detection of anomalies purely based on the reconstruction error
of the model. This means, for model f , sample x ∈ X and data space X , we would simply define αf (x) = ‖x− f(x)‖22. In
order to quantify the performance of non-variational dynamic trajectory model (TAE) and compare to a standard autoencoder
trained on single frame reconstruction, we performed another ablation on AE, VAE, and the variants of TAE and TVAE.
Results of this ablation are aggregated in Table 6.

F. More Decision Heatmaps
In addition to the heatmaps presented in Section 4.3, we provide a more extensive collection of TVAE-S decision heatmaps
in Figure 9 and Figure 10.

G. Generated Videos
The introduced TVAE variations are generative models. As such, in addition to producing good reconstructions of existing
samples, they allow us to sample from the learned distribution. To qualitatively validate generative performance, we provide
random generations of the TVAE-S model in Figure 11 for both 4CV and PLAX views.
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Figure 5. Examples of each label of the cohort in 4CV and PLAX views.
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(a) Convolution block (b) Deconvolution block

(c) Linear block (d) Residual block

Figure 6. Definitions of the encoder/decoder building blocks.
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(a) Encoder (b) Decoder

(c) Latent space components

Figure 7. Architectures of encoder (a), decoder (b) and latent space components (c). Spatial latent space components are used to learn z, µ
and σ for AE/VAE or b, µb and σb for TAE/TVAE. Temporal latent space components learn f, ω or v for TAE/TVAE.
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Figure 8. More TVAE-S reconstructions.
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Table 6. Area under the curve and average precision for experiments performed with anomaly score αf (x) =
1
T

∑T
t=1 ‖x

(t) − f (t)(x)‖22.

SSD RVDil PH
AUROC AP AUROC AP AUROC AP

4CV

AE 0.566±0.1 0.602±0.09 0.634±0.05 0.816±0.03 0.612±0.03 0.803±0.02
VAE 0.699±0.09 0.732±0.08 0.619±0.05 0.803±0.03 0.635±0.04 0.808±0.04
TAE-C 0.572±0.09 0.651±0.05 0.581±0.04 0.775±0.03 0.609±0.02 0.795±0.01
TAE-R 0.612±0.06 0.695±0.06 0.594±0.04 0.781±0.03 0.617±0.02 0.8±0.02
TAE-S 0.558±0.1 0.646±0.08 0.612±0.04 0.794±0.03 0.614±0.03 0.802±0.02
TVAE-C 0.672±0.06 0.736±0.05 0.6±0.04 0.779±0.03 0.622±0.03 0.803±0.01
TVAE-R 0.673±0.07 0.745±0.07 0.611±0.03 0.787±0.02 0.621±0.04 0.803±0.03
TVAE-S 0.616±0.1 0.679±0.05 0.61±0.05 0.786±0.04 0.631±0.03 0.8±0.03

PLAX

AE 0.917±0.08 0.889±0.1 0.681±0.03 0.848±0.02 0.637±0.05 0.827±0.03
VAE 0.918±0.07 0.915±0.05 0.683±0.03 0.851±0.02 0.631±0.05 0.819±0.03
TAE-C 0.917±0.09 0.885±0.13 0.65±0.03 0.825±0.02 0.646±0.06 0.827±0.03
TAE-R 0.913±0.08 0.878±0.1 0.68±0.05 0.84±0.03 0.639±0.05 0.823±0.02
TAE-S 0.927±0.07 0.905±0.09 0.666±0.03 0.836±0.01 0.635±0.04 0.827±0.02
TVAE-C 0.927±0.07 0.907±0.08 0.65±0.04 0.828±0.02 0.617±0.05 0.814±0.03
TVAE-R 0.917±0.07 0.883±0.11 0.664±0.05 0.831±0.03 0.622±0.05 0.818±0.02
TVAE-S 0.935±0.08 0.916±0.11 0.658±0.05 0.828±0.02 0.625±0.04 0.823±0.02
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Figure 9. More TVAE-S decision heatmaps for healthy echos.
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Figure 10. More TVAE-S decision heatmaps for anomalous echos.



Interpretable Anomaly Detection in Echocardiograms

Figure 11. Random TVAE-S generations of samples in 4CV and PLAX views.


