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Abstract. PET/CT imaging is the gold standard for the diagnosis and
staging of lung cancer. However, especially in healthcare systems with
limited resources, costly PET/CT images are often not readily available.
Conventional machine learning models either process CT or PET/CT
images but not both. Models designed for PET/CT images are hence
restricted by the number of PET images, such that they are unable to
additionally leverage CT-only data. In this work, we apply the concept
of visual soft attention to efficiently learn a model for lung cancer seg-
mentation from only a small fraction of PET/CT scans and a larger pool
of CT-only scans. We show that our model is capable of jointly process-
ing PET/CT as well as CT-only images, which performs on par with
the respective baselines whether or not PET images are available at test
time. We then demonstrate that the model learns efficiently from only a
few PET/CT scans in a setting where mostly CT-only data is available,
unlike conventional models.

1 Introduction

Lung cancer is the second most frequently diagnosed cancer type and the leading
cause of cancer-related deaths in men and women alike with high incidence and
mortality rates [14]. For the staging of lung cancer, PET/CT imaging is widely
used, because it provides complementary information: while the CT component
visualizes anatomical properties, the PET component represents the metabolism.
This gives additional information on tumor activity and is important for the
detection of metastases. Despite its important role, combined PET/CT imaging
is often unavailable, due to logistic and economic constraints.

Unfortunately, conventional machine learning models only cater to CT data
or PET/CT data, but not both, which poses a significant problem, especially in
resource-constrained populations. Prior work [3, 6] has highlighted this challenge,
and several other approaches have been proposed to deal with it [4, 1, 19]. They
attempt to learn effective joint representations of PET/CT modalities. However,
such approaches still assume that a PET image is available for every CT image
during training. This assumption greatly reduces the amount of effective training
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data for a combination of CT-only and PET/CT data. Consequently, while such
models might be efficient during inference, they fall short in not being able to
learn effective joint representations for a combination of CT-only and PET/CT
data. The problem is further compounded by the complexity of the data, which
typically includes different types of malignant lesions (e.g., the main tumor,
lymph nodes metastases, and distant metastases). As such, conventional models
typically cannot make the best use of a combination of CT-only and PET/CT
data, a typical scenario in resource-constrained environments.

To solve this problem, we apply the established concept of visual soft atten-
tion [12]. The attention mechanism allows us to input PET images when they are
available. As such, the model benefits from the additional information contained
in PET images but does not mandate them. The model is thus flexible to the
availability of PET data. Consequently, it is possible to incorporate two separate
models that are trained on unimodal (CT) or bimodal (PET/CT) data, respec-
tively, into one single model. Additionally, since, we do not explicitly enforce
the attention mechanism to learn a joint representation of PET/CT modalities,
our model can be trained on a mix of CT-only and PET/CT images. Thus, our
model has the potential to make efficient use of both CT-only and PET/CT
data, unlike conventional models. We present the effectiveness of our model on
a large dataset with the goal of segmenting tumorous regions. We acronym our
model as PAG, which stands for PET-guided attention gate. To summarize, the
three main contributions of the current work are:

i) We propose a novel approach for dealing with a combination of CT-only and
PET/CT data based on a visual soft attention mechanism.

ii) Our model combines two discrete functions that deal with unimodal or bi-
modal data, respectively, in a single model.

iii) We demonstrate a realistic application of the model in scenarios when PET/CT
images are scarce relative to CT-only images and show how the model makes
efficient use of the combination of CT-only and PET/CT data.

2 Related work

Segmentation of anatomical structures such as tumors, lesions and lung nodules
from PET/CT images is an active and dynamic area of research within medi-
cal imaging. [17] implemented the U-Net architecture [13] for the segmentation
of nasopharyngeal tumors from dual-modality PET/CT images. [8] learned a
probability map of tumorous regions from a CT image and then used a fuzzy
variational model that incorporates the probability map as a prior and the PET
images to obtain a posterior probability map of tumorous regions. [5] studied
different fusion schemes of multi-modal images, all of which fuse the images at
the pixel space. [18] refined the segmentation maps obtained separately from CT
and PET images, using a graph-cut based co-segmentation model to refine the
segmentation maps. [9] used belief functions to fuse the PET and CT images to
obtain segmentation masks of the tumors.
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The named methods are based on bi-modal inputs i.e. both PET and CT
modalities. Such models, typically assume that a complete set of all modalities
used during training is available even during inference. Such methods do not have
the capacity to incorporate for missing modalities. Accordingly, several other
methods have been proposed that deal with missing modalities. [6] proposed
the Hemis model to extract representations from multiple modalities—in their
case, MR image sequences (such as DWI, T1-weighted, T2-weighted, FLAIR)—
and fuse them in a latent space where arithmetic operations such as the first
and second moments of the representations can be calculated. This composite
representation can then be deconvolved accordingly. The authors tested the ap-
plicability of their model to MR image segmentation (on MSGC [15] and BRATS
2015 [10] datasets). They argue that instead of learning all combinations of func-
tions, each dealing with a specific missing modality, one single model can be
learned that deals with all such missing modalities. [3] proposed a generic multi-
input, multi-output model, which is an improvement over the Hemis model [6]
that is equivalently robust to missing modalities. The model, which is based on
correlation networks [2], was proposed to tackle the challenge of learning shared
representations from multi-modal images. Correlation networks [2] learn effective
correlations among individual modality-specific representations in a coordinated
representation space. Imposing correlations as such aid in learning a shared (or
coordinated) representation space, especially for MR image modalities that are
correlated among one another, in the sense that all the tumorous regions show
specific distinctive properties from non-tumorous regions, varying only in their
intensity patterns. [3] exploited this fact of MR images, by explicitly imposing
correlations among representations extracted from individual modalities through
the minimization of the Euclidean distance between modalities. However, it is
essential to note that for the problem at hand, the PET and CT modality in
PET/CT are not as well correlated as MR image modalities are. While tumor-
ous regions show a distinctive glare from non-tumorous ones in a PET image,
it is very much plausible that a similar glare can be observed in non-tumorous
regions as well. Therefore, enforcing correlations, as done for MR images, may
not be the best approach to learn representations of PET/CT scans.

Further, named methods assume that a complete set of modalities is available
during training, which may not be a valid assumption. In particular, it is not
always possible to compute correlations with incomplete PET/CT data, meaning
that a CT scan is available, but no corresponding PET scan. In contrast, the
proposed method treats PET representations as an optional context vector that
is fused with the CT representations through an attention mechanism, which
has the capability to amplify the signal in salient and discriminatory regions.

3 Methods

3.1 Objective

Let XCT and XPET represent the domain of CT and PET images respectively.
Likewise, let Y represent the domain of segmented tumorous regions. Given is
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Fig. 1. Schematic of the proposed PET-guided attention gate. The input feature rep-
resentation xl is scaled by attention mask α, which is computed by the attention gate.
Spatial and contextual information are captured by two gating signals: the encoded
feature representation g and the composite function h(x). The composite function is
zero when the PET images are missing and the output of the function f(xPET ) when
PET images are available. PET image representation and not the PET image itself is
fed to the attention gate.

a dataset consisting of N PET/CT images {xCTi , xPETi }Ni=1 and M CT images
{xCTi }Mi=1 (xCTi ∈ XCT and xPETi ∈ XPET ) for which corresponding PET
images are missing. A typical scenario would be 0 ≤ N < M . For every CT
image we have a segmentation mask of tumorous regions i.e. {xCTj , yj}Mj=1 where

xCTj ∈ XCT and yj ∈ Y .

We are interested in a composite function H : (XCT , s ·XPET ) → Y where
s equals 1 if PET images are available and 0 otherwise. The composite function
H encompasses two functions: F : (XCT , XPET ) → Y and G : XCT → Y . ŷ =
H(xCT , s · xPET ) gives the probability map of tumorous regions. The proposed
PAG model models the function H : (XCT , s ·XPET )→ Y .

3.2 Attention mechanism

Intuition. The attention gate proposed as part of the current model is built
upon the one introduced by [12] for pancreas segmentation on CT images. They
based their formulation upon a soft attention mechanism for image classification
introduced by [7]. Their attention gate has two inputs: (a) a feature represen-
tation and (b) a gating signal. The gating signal filters the input feature repre-
sentation to select salient regions. The attention gate learns attention masks by
attending to parts of the input feature representation. It is enforced by allowing
the input feature representation to be compatible with the input gating signal.
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[12, 7] used the encoded feature representation (output of the encoder) as the
gating signal.

The gating signal provides context for the input feature representation to
learn salient attention masks. We propose to use PET image feature represen-
tation as an additional input along with the encoded feature representation, as
shown in Figure 1. Since PET images can be thought of as a heatmap of tumorous
regions in a given CT image, they can help to learn better and discriminatory at-
tention masks by helping the attention masks to focus their attention on regions
where PET images show a distinctive glare over their surroundings. Accordingly,
the context provided by the encoded feature representation is only enhanced by
the input of PET image features whenever they are available. Additionally, this
formulation does not mandate the use of PET images features. PET image fea-
tures can be fed to the model as and when available, making the model flexible
to the non-availability of PET images.

Attention gate. Let g represent an encoded feature representation with Hg ×
Wg ×Dg spatial resolution and Fg filter channels respectively for an input CT
image xCT . Similarly let xl represent a feature representation at an intermediate
spatial resolution of the encoder branch (skip connection) with Hx ×Wx ×Dx

spatial resolution and Fl filter channels respectively for the same input CT image
xCT . Likewise, let xPET be an input PET image corresponding to the input CT
image xCT .

The attention gate learns attention coefficients αli ∈ [0, 1] for layer l and
voxel position i that identify discriminatory image regions and discard those
feature responses to preserve activations that are specific to the appropriate
task at hand. The output of the attention gate is an element wise multiplication
of the feature representation xli ∈ RFl and attention coefficients αli to obtain the
filtered output x̂li = xli � αli, where � denotes the element-wise multiplication.
We consider a single attention coefficient for the multi-dimensional vector xli at
voxel position i. Also note that gi ∈ RFg for voxel position i.

Let θx ∈ RFl×Fint and θg ∈ RFg×Fint be linear transformations that are
applied to the intermediate feature representation xl and the encoded feature
representation g respectively. Let f(xPET ) be a function that extracts PET
image specific features before they are applied to the attention gate. Define a
composite function

h(x) =

{
f(xPET ) when PET images are available

0 when PET images are unavailable
(1)

Then the attention coefficients are given by

qlatt = ψT (σ1(θTx x
l
i + θTg g

l
i + h(x) + bg)) + bψ (2)

αli = σ2(qlatt(x
l
i, gi;Θatt)) (3)
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where σ1(x) and σ2(x) are ReLU and sigmoid activations respectively. The
parameters of attention gate Θatt are given by θx ∈ RFl×Fint , θg ∈ RFg×Fint ,
ψ ∈ RFint×1 and bias terms bψ ∈ R, bg ∈ RFint . The linear transformations are
computed using channel-wise 1× 1× 1 convolutions for the input tensors.

The composite function. The composite function defined by Equation 1 rep-
resents scenarios when the PET images are either available or missing. In the
absence of PET images, the function takes on a value of zero, which boils down
to having a simple attention gate akin to the one proposed by [12] on top of
the encoder-decoder architecture. However, in the presence of PET images, the
function is identical to the PET image feature extractor f(xPET ). Instead of
passing the PET images directly as an input to the attention gate, we pass a
higher dimensional feature representation extracted by the function f(xPET ),
which supposedly encompasses a richer spatial and contextual information than
the PET images themselves. This function could be any function approximator
such as a neural network. A key insight of the proposed model is that, in contrast
to previous modality fusion architectures [3, 6], there is no fusion of the respec-
tive modality-specific embeddings. Such a fusion of embeddings from different
modalities can skew the intended embedding space while training the respective
models with missing modalities such as in our case. Since there is no fusion of
PET and CT embeddings in the proposed PAG model, we do not run the risk
of learning skewed embeddings while training the model with a combination of
PET/CT and CT images.

The model architecture is an encoder-decoder architecture similar to a U-Net
architecture with three skip connections. The three skip connections are filtered
through their respective attention gates, with each attention gate having its own
set of parameters. More details about the model architecture can be found in
the supplementary section.

4 Experiments

We consider four baselines to validate our approach. To make a fair compari-
son, the PAG model and all baselines use the same backbone architecture [11].
Unimodal and bimodal models process CT-only and PET/CT data respectively.
The only difference between unimodal and bimodal models is that PET images
are input to bimodal model as an additional channel along with CT images. On
the other hand, unimodal+attn and bimodal+attn models are unimodal and
bimodal models with the addition of a simple attention gate [12]. Similar to
the unimodal and bimodal models, unimodal+attn and bimodal+attn models
process CT-only and PET/CT images respectively. Unlike the two discrete uni-
modal and bimodal models (or unimodal+attn and bimodal+attn models), the
PAG model is a single model that handles both unimodal and bimodal scenarios.
PAG:ct denotes the PAG model with CT-only inputs during inference, whereas
PAG:ct+pet denotes the model with PET/CT inputs respectively.
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4.1 Ablation framework

The ablation study underscores the contribution of the proposed PAG model in
contrast to the conventional models. To make things simpler to follow, consider a
hypothetical scenario where we have 80 CT and 20 PET/CT scans respectively.
So all in all, we have 100 CT scans, of which 20 CT scans have a corresponding
PET series. While it is possible to train a unimodal model with 100 CT scans, a
bimodal model can only be trained using 20 PET/CT scans. The rest of the 80
CT scans can not be used. On the other hand, since the PAG model is flexible
to the availability of PET scans, it is possible to train the model on the 100 CT
scans, including the 20 PET scans. Accordingly, the ablation study is designed
to examine the performance of the model in scenarios such as these. Concretely,
through this ablation study, we examine the performance of the baseline bimodal
model and the proposed PAG model as the fraction of the total number of PET
series that are made available for training is gradually reduced. With the decrease
in the number of PET scans as such, the number of CT scans that can be used
for training bimodal model also decreases. However, the PAG model can leverage
upon the complete set of CT scans in conjunction with the restricted number of
PET scans. It is important to note that since we keep the number of CT scans
fixed, the corresponding number of annotated scans (ground truth segmentation
masks) is also fixed.

In other words define the ratio r = npet/Npet where npet are the number of
PET scans available for training and Npet the total number of PET scans in
the given dataset. We then decrease the ratio r gradually from 1 to 0 (Npet is
fixed). It is expected that with decreasing ratio r, the performance of the bimodal
model decreases noticeably. However, we expect the decrease in the performance
of the novel PAG model to be less pronounced. At all times, even in the limit
of zero PET scans, it should perform at least as good as a unimodal model that
is trained on the complete set of CT scans. In the following, we provide details
about the dataset and implementation details for the experiments, before we
continue with the presentation and discussion of the results.

Evaluation data. We evaluate our approach on a dataset of 397 PET/CT
scans of patients suffering from lung cancer, collected and labeled by the ra-
diology department of the University of Basel, Switzerland. PET/CT images
provide complementary information on the regions of interest compared to CT-
only data. PET images can be thought of as a heatmap for the corresponding
CT images where the tumorous regions show a marked contrast or a distinctive
glare between their surroundings. An example of such a pair of CT images and
a PET/CT image (PET image superimposed on CT image) is shown in Figure
2. Note that the tumorous region, which is bound by a red bounding box in the
CT image, has a marked contrast over its surroundings in the PET/CT image.
This is because of the greater 18F-FDG uptake by the malignant tumors due to
higher metabolic activity, which can be detected from PET images.

The dataset contains a rich diversity of primary tumors, lymph node metas-
tases, and other metastases that were independently segmented by two expert
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Fig. 2. (Left) An example of a malignant tumor in the right lung. The tumor is sur-
rounded by the bounding box in red. (Right) PET/CT image for the same region.
There is a distinctive glare in the region for the corresponding tumorous region.

radiologists. Therefore, the dataset provides a rich data source that is an order of
magnitude larger than existing public PET/CT datasets with labelled segmen-
tation maps. More details about the dataset are provided in the supplementary
information.

Evaluation criteria. We use dice coefficient as our metric to evaluate the
proposed model. Dice coefficient is one of the most widely used metric to evaluate
segmentation algorithms. It measures the degree of overlap between the ground
truth and predicted segmentation masks factored by the number of true positives
and false positives. It falls within a range of [0,1] with 0 signifying absolutely no
intersection between the two sets while 1 signifying a perfect intersection with
no false positives or false negatives, meaning both sets are alike. A correctly
predicted segmentation mask has a dice coefficient of 1, whereas a segmentation
mask that predicts zeros for all the voxels has a dice coefficient of 0. Therefore
we would expect the dice coefficient of a segmentation algorithm to lie in the
range of [0, 1] and the higher the dice coefficient, the closer is the predicted
segmentation mask to the ground truth segmentation mask.

Training details. We developed all our models using the PyTorch framework.1

Each of the models occupies approximately 12GB of GPU memory for model
parameters, forward and backward pass. So with a batch size of 2, the memory
requirement is approximately doubled i.e., 24GB. All models were trained on a
server of 8 NVIDIA Tesla V-100-SXM2 32 GB GPUs. We chose a weighted com-
bination of Sorenson-Dice loss and binary cross-entropy loss as our loss function,
a default choice for segmentation tasks. All the models were trained using Adam
optimizer (default parameters) and group normalization [16]. Initially, the learn-
ing rate α was set to 0.0001; the learning rate was then gradually decayed after
every training epoch. The model parameters were regularised using L2 regularisa-
tion with regularisation parameter β set to 10−5. Augmented data was included
for training at every training epoch but with a probability pdata−aug = 0.25. All
models were trained for 75 epochs.

1 https://github.com/pvk95/PAG
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While training the PAG model, it is critical that PET images are randomly
excluded at every training step with a non zero probability p. We do this to
ensure that the PAG model does not overfit to either of the scenarios when PET
images are available or not. We set this probability value p = 0.5. (See appendix
for a list of hyper-parameters).

From the dataset consisting of 397 PET/CT labeled images, 77 PET/CT
images and their corresponding labels were randomly selected and set apart as
our test dataset. The remaining 320 samples were used for training and vali-
dation. All the baseline and PAG models have been evaluated using four-fold
cross-validation experiments. The training and validation dataset is randomly
split into four folds. One of the folds was kept out for validation. The remaining
three folds were used for training the models. Each of the models was then re-
trained on the entire 320 PET/CT images before testing the models on the test
dataset. When constraining the number of PET images in the ablation study,
we randomly sampled the appropriate number of PET images from the samples
that were initially earmarked for training and then trained accordingly. It is
noteworthy that the respective validation folds across all the models and all the
ratios r in the ablation study remain the same. More details about the training
are provided in the supplementary information.

4.2 How well does the model incorporate the two scenarios: CT
only images and PET/CT images?

Figure 3 shows the performance of the individual baseline models and the PAG
model when a PET image is available for every CT image while training the
models. We thus do not place any restriction on the availability of PET images.
We do this primarily to validate whether our model is able to handle the combi-
nation of CT and PET/CT images well. We observe that the PAG:ct+pet model
performs on par with bimodal and bimodal+attn models. Similarly, PAG:ct per-
forms on par with unimodal and unimodal+attn models.

We incorporated the attention mechanism of [12] to the unimodal and bi-
modal models, and denote the resulting models with unimodal+attn and bi-
modal+attn. We expected them to outperform their non-attention counterparts
(i.e., the unimodal and bimodal models). However, this is not the case, consid-
ering Figure 3. The reason for this behaviour could be the complexity of our
dataset. The attention gate [12] of the unimodal+attn and bimodal+attn mod-
els was originally tested on two publicly available datasets for pancreas image
segmentation. The pancreas has a definite shape, structure, and morphology.
They are found in a single location within the body. However, the tumors of
the current dataset exhibit varying shapes, structures, morphologies, and even
locations within the body. This could explain why we do not observe a signif-
icant performance gain on our dataset, by adding their attention gate to the
unimodal and bimodal models. However, this does not imply that the attention
mechanism is not at play here, but that the attention masks are not informative
enough. However, it becomes clear from Figure 3 that accommodating PET im-
ages as part of the proposed attention gate significantly improves performance
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Fig. 3. The Figure shows the performance of the baseline models and the PAG model
on the test data set. PAG:ct and PAG:ct+pet are both based on the PAG model.
PAG:ct+pet is PAG model when PET images are input to the model in addition to
the CT images. Conversely, PAG:ct is PAG model when only CT images are input to
the model, but no PET images are used as input to the model. PAG:ct performs at par
with the unimodal and unimodal+attn models. Similarly PAG:ct+pet model performs
at par with the bimodal and bimodal+attn models.

of the models, considering the better performance of PAG:ct+pet model (dice
coefficient=0.73) over PAG:ct model (dice coefficient=0.58). This is not just a
consequence of the addition of PET images to the PAG:ct+pet model but be-
cause of the addition of PET images to the PAG:ct+pet model in association
with the proposed attention gate, the very means of how PET images are fed to
the model.

Consequently, we conclude that when PET images are available during infer-
ence, PAG:ct+pet performs on par with bimodal and bimodal+attn models, and
when they are not available, PAG:ct performs on par with unimodal and uni-
modal+attn models. This supports the claim that the PAG model successfully
encompasses the two discrete models: unimodal and bimodal models. Further,
the addition of PET images through the proposed attention gate makes a sig-
nificant impact on the performance of the PAG model. This validates that the
attention gate effectively integrates information from PET images, whenever
they are available.

4.3 How well does the model handle a combination of CT and
PET/CT images?

Figure 4 shows the result of the ablation study, as described earlier in section 4.1.
The performance of the PAG:ct+pet model and the bimodal models is evaluated
as the ratio r = npet/Npet is gradually reduced. The ratio points considered are
[1.0, 0.5, 0.3, 0.15, 0.1, 0.05, 0.03]. The majority of examined data points are
close to zero, in order to compare and contrast the significance of the PAG
model when PET images are very scarce. The unimodal model is illustrated
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Fig. 4. The Figure shows the dice coefficient for the PAG model and the bimodal model
when the fraction of total PET images that are made available for training the models
is restricted. Results are shown for the validation (CV) and test (Test) data sets. The
green band is the mean and standard deviation of the unimodal model trained on CT
images. The degradation in performance of the bimodal model is much more drastic
than the PAG:ct+pet model. Note that PAG:ct+pet model always maintains the edge
over unimodal model because either of the models were trained on the same number
of CT images, with additional PET images for PAG:ct+pet model.

as well with its mean (green dotted line) and standard deviation (green band
around the dotted line). It can be seen that for all the values of ratio r, the
dice coefficient of PAG:ct+pet is greater than the bimodal model. Consider, for
instance a point at r = 0.15. This point represents a scenario where one has
36 PET/CT images and 204 CT-only images or 240 CT images in total. The
bimodal model was trained on the small set of 36 PET/CT images while the PAG
model was trained on 204 CT images and 36 PET/CT images. This shows that
the extra 204 CT-only images which would otherwise have been discarded while
training the bimodal model could be used for training the PAG model. Clearly,
the extra 204 CT-only images make a difference in boosting the dice coefficient
of the model. This performance gain becomes more and more extreme as the
ratio r approaches values closer to zero.

There is another facet to the PAG:ct+pet model. Irrespective of the ratio r,
PAG:ct+pet was trained on the same number of CT images. This implies that
even in the limit of zero PET images, the performance of PAG:ct+pet should
not degrade below the performance of unimodal model which can be clearly ob-
served for points closer to zero ([0.03, 0.05, 0.1]). For example, consider a point
r = 0.03. This point represents a data set with 7 PET/CT images and 233
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CT-only images or 240 CT images in total. The unimodal model was trained on
240 CT images while the PAG model was trained on 240 CT images including 7
PET images. Clearly, the extra number of 7 PET images yielded in significant
performance gains (dice coefficient = 0.66) over the unimodal model (dice coef-
ficient = 0.56). Naturally, the improvement in performance becomes more and
more obvious with increasing ratios r.

Hence, in the limit of zero PET images, the PAG model is able to successfully
leverage upon the extra number of CT-only images. This behaviour is reflected in
the higher dice coefficient of PAG:ct+pet model over the bimodal model. In the
scenario when the PAG model is trained with CT-only images, the performance
boundary would be the unimodal model. Consequently, just with the addition of
a few PET images to the PAG model, we observe significant performance gains,
considering higher dice coefficient of PAG:ct+pet model over unimodal model.
This supports our claim that the model makes efficient use of the combination
of CT-only and PET/CT data.

5 Discussion and Conclusion

Although PET/CT imaging is the gold standard for the staging of lung cancer,
due to logistic and economic constraints, PET images are often unavailable.
This problem is especially prominent in resource-constrained healthcare systems.
While conventional methods are unable to handle a combination of CT-only
and PET/CT data, we tackled this challenge by adapting an established visual
soft attention mechanism to the problem at hand. We demonstrated that our
proposed approach performs on par with unimodal and bimodal baselines. We
further present that our model is especially useful when the number of PET
images is small in comparison to the number of CT images, which is relevant in
resource-constrained environments.

It is noteworthy, irrespective of the number of PET/CT images that are
available, the model always requires the same number of segmentation masks as
the number of total number of CT images. This could be a limitation considering
the manual effort in procuring the segmentation masks. In future work, we would
like to explore the possibility of reducing the number of segmentation masks
by generative models. Thereby, we could extend the resource efficiency of the
algorithm to leverage a reduced number of segmented images.

Another interesting direction for future research would be to extend the pro-
posed PAG model to other imaging modalities such as MRIs, as our formulation
is not limited to a single additional modality. It would be interesting to in-
vestigate further the behaviour of the proposed attention gate with additional
modalities.
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