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Abstract. Multimodal generative models learn a joint distribution over
multiple modalities and thus have the potential to learn richer represen-
tations than unimodal models. However, current approaches are either in-
efficient in dealing with more than two modalities or fail to capture both
modality-specific and shared variations. We introduce a new multimodal
generative model that integrates both modality-specific and shared fac-
tors and aggregates shared information across any subset of modalities
efficiently. Our method partitions the latent space into disjoint subspaces
for modality-specific and shared factors and learns to disentangle these
in a purely self-supervised manner. Empirically, we show improvements
in representation learning and generative performance compared to pre-
vious methods and showcase the disentanglement capabilities.

1 Introduction

The promise of multimodal generative models lies in their ability to learn rich
representations across diverse domains and to generate missing modalities. As
an analogy, humans are able to integrate information across senses to make
more informed decisions [33], and exhibit cross-modal transfer of perceptual
knowledge [41]; for instance, people can visualize objects given only haptic cues
[42]. For machine learning, multimodal learning is of interest in any setting where
information is integrated across two or more modalities.

Alternatives to multimodal generative models include unimodal models with
late fusion or with coordinated representations, as well as conditional models
that translate between pairs of modalities [3]. Yet, both alternatives have disad-
vantages compared to multimodal approaches. While unimodal models cannot
handle missing modalities, conditional models only learn a mapping between
sources, and neither integrate representations from different modalities into a
joint representation. In contrast, multimodal generative models approximate the
joint distribution and thus implicitly provide the marginal and conditional distri-
butions. However, learning a joint distribution remains the more challenging task
and there still exists a gap in the generative performance compared to unimodal
and conditional models.

We bridge this gap by proposing a new self-supervised multimodal generative
model that disentangles modality-specific and shared factors. We argue that this
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disentanglement is crucial for multimodal learning, because it simplifies the ag-
gregation of representations across modalities. For conditional generation, this
decomposition allows sampling from modality-specific priors without affecting
the shared representation computed across multiple modalities. Further, decom-
posed representations have been found to be more interpretable [6, 17] and more
amenable for certain downstream tasks [26].

The main contribution of this work is the development of a new multimodal
generative model that learns to disentangle modality-specific and shared factors
in a self-supervised manner. We term this new method disentangling multimodal
variational autoencoder (DMVAE). It extends the class of multimodal variational
autoencoders by modeling modality-specific in addition to shared factors and by
disentangling these groups of factors using a self-supervised contrastive objective.
In two representative toy experiments, we demonstrate the following advantages
compared to previous multimodal generative models:

– Effective disentanglement of modality-specific and shared factors. This allows
sampling from modality-specific priors without changing the joint represen-
tation computed from multiple modalities.

– Improvements in representation learning over state-of-the-art multimodal
generative models. For any subset of modalities, our model aggregates shared
information effectively and efficiently.

– Improvements in generative performance over previous work. In a fair com-
parison, we demonstrate that modeling modality-specific in addition to shared
factors significantly improves the conditional generation of missing modali-
ties. For unconditional generation, we demonstrate the effectiveness of using
ex-post density estimation [8] to further improve joint generation across all
methods, including trained models from previous work.

2 Related Work

Broadly, our work can be categorized as an extension of the class of multimodal
generative models that handle more than two modalities (including missing ones)
efficiently. Among this class, we present the first method that partitions the
latent space into modality-specific and shared subspaces and disentangles these
in a self-supervised fashion.

Multimodal generative models. Current approaches are mainly based on encoder-
decoder architectures which learn the mapping between modalities based on
reconstructions or adversarial objectives (for a comprehensive review, see [3]).
Among this class, methods can be distinguished by the type of mapping they
use to translate between inputs and outputs and by how they handle missing
modalities. Early approaches [35, 16] try to learn all possible mappings, which in
the case of missing modalities results in 2M encoders for M modalities. A more
efficient alternative is proposed by [40] who introduce the multimodal varia-
tional autoencoder (MVAE) which uses a joint posterior that is proportional
to a product of experts (PoE) [14]. Their method handles missing modalities
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efficiently, because it has a closed form solution for the aggregation of marginal
Gaussian posteriors. However, their derivation of the joint posterior is based
on the assumption that all modalities share a common set of factors—an as-
sumption that is often violated in practice, because modalities exhibit a high
degree of modality-specific variation. Our model also uses a joint latent space
with a product of experts aggregation layer, and thus shares the same theoret-
ical advantages, but it considers modality-specific factors in addition to shared
factors. The limitations of the MVAE were shown empirically in [31], where it
is stated that the MVAE lacks the abilities of latent factorization and joint gen-
eration. With latent factorization the authors refer to the decomposition into
modality-specific and shared factors, and by joint generation they mean the se-
mantic coherence of unconditionally generated samples across modalities. They
attribute these problems to the joint posterior used by the MVAE and demon-
strate empirically that using a mixture of experts, instead of a product, improves
generative performance. In contrast, we argue that the product of experts is not a
problem per se, but that it is an ill-defined aggregation operation in the presence
of modality-specific factors. We resolve this model misspecification by modeling
modality-specific factors in addition to shared factors. Compared to the mixture
of experts multimodal variational autoencoder (MMVAE) [31], our model has
the advantage that it can sample from a modality-specific prior without affecting
the shared representation which can still be aggregated efficiently across modali-
ties through the PoE. Especially with more than two modalities, the aggregation
of representations, as it is done in our model, shows its benefits compared to the
MMVAE (see Section 4.2).

Domain Adaption/Translation. The research areas of domain adaption and do-
main translation are in many regards closely related to multimodal generative
models. Approaches that have explored many-to-many mappings between differ-
ent domains have been based on adversarial methods [24, 7], shared autoencoders
[36] and cycle-consistency losses [2]. Translation methods have shown remark-
able progress on image-to-image style transfer and the conceptual manipulation
of images, however, their focus lies on learning conditional mappings, while our
method models the joint distribution directly. Further, through the PoE our
method aggregates shared representations across any subset of modalities and
therefore handles missing modalities efficiently.

Disentanglement. Our goal is not the unsupervised disentanglement of all gener-
ative factors, which was shown to be theoretically impossible with a factorizing
prior and claimed to be impossible in general [25]. Instead, we are concerned
with the disentanglement of modality-specific and shared sets of factors. In the
multi-view and multimodal case, there is theoretical evidence for the identifiabil-
ity of shared factors [9, 19, 27, 37]. Further, the self-supervised disentanglement
of shared factors has been previously explored based on grouping information
[4], temporal dependencies [23], partly labeled data [18, 38, 39], and spatial in-
formation [5]. We take a first step towards disentanglement given multimodal
data with modality-specific factors and an implicit, unknown grouping.
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3 Method

In this section, we introduce multimodal generative models and derive the vari-
ational approximations and information-theoretic objectives that our method
optimizes. All proofs are provided in the appendix.

We consider a generative process with a partition into modality-specific and
modality-invariant (i.e., shared) latent factors (Figure 1). A multimodal sample
x = (x1, . . . , xM ) with data from M modalities is assumed to be generated from
a set of shared factors c and a set of modality-specific factors sm. Consequently,
samples from different modalities are assumed to be conditionally independent
given c. In the following, we denote the set of all modality-specific factors of a
multimodal sample as s = (s1, . . . sM ).

Given a dataset {x(i)}Ni=1 of multimodal samples, our goal is to learn a gener-
ative model pθ(x |c, s) with a neural network parameterized by θ. From the above
assumptions on the data generating process, it follows the joint distribution

p(x, s, c) = p(c)

M∏
m=1

p(sm)p(xm | c, sm) (1)

which allows to consider only the observed modalities for the computation of the
marginal likelihood.

The computation of the exact likelihood is intractable, therefore, we resort to
amortized variational inference and instead maximize the evidence lower bound

LVAE(x, c) :=

M∑
m=1

Eqφ(sm | xm)

[
log pθm(xm | c, sm)

]
−DKL (qφ(sm|xm) || p(sm))

which is composed of M log-likelihood terms and KL-divergences between ap-
proximate posteriors qφ(sm | x) and priors p(sm). Above objective describes M
modality-specific VAEs, each of which takes as input an additional context vec-
tor c that encodes shared information (described in Section 3.2). We use neural
networks for each encoder qφm(sm |xm) as well as for each decoder pθm(xm |c, sm)
and denote the network parameters by the respective subscripts for decoder pa-
rameters θ and encoder parameters φ. Further, we follow the convention of using
an isotropic Gaussian prior and Gaussian variational posteriors parameterized
by the estimated means and variances that are the outputs of the encoder.

For each modality-specific VAE, it is possible to control the degree of disen-
tanglement of arbitrary factors with a weight on the respective KL-divergence
term, like in the β-VAE [13]. However, there exist theoretical limitations on the
feasibility of unsupervised disentanglement of arbitrary factors [25]. In contrast,
we focus on the disentanglement of modality-specific and shared factors, for
which we use two additional objectives that are introduced in Subsection 3.2.

3.1 Multimodal inference network

A key aspect in the design of multimodal models should be the capability to
handle missing modalities efficiently [3]. In our case, only the shared represen-
tation depends on all modalities and should ideally be able to cope with any
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Fig. 1: Graphical model and network architecture for the special case of two
modalities. Left: A sample xm from modality m is assumed to be generated by
modality-specific factors sm and modality-invariant factors c. Center: Inference
network that aggregates shared factors through a product of experts (PoE) layer.
Dashed lines represent simulated missing modalities as used during training.
Right: Decoder network (black) for modality m and loss terms (green). Dotted
lines denote paths that are not being backpropagated through. Shared factors
are learned by a contrastive objective which takes as input representations c
and c̃ computed from different subsets of modalities. Modality-specific factors
are inferred by regularizing out shared information from the latent space of the
VAE. All loss terms are defined in Subsection 3.2.

combination of missing inputs, which would require 2M inference networks in
a naive implementation. A more efficient alternative is offered in [40], where a
product of experts (PoE) [14] is used to handle missing modalities. Under the
assumption of shared factors, previous work [40] has shown that the posterior
p(c | x) is proportional to a product of unimodal posteriors

p(c | x) ∝ 1

p(c)M−1

M∏
m=1

p(c | xm) (2)

which—for the special case of Gaussian posteriors—has an efficient closed-form
solution (see Appendix A.3). We also assume Gaussian unimodal posteriors
qψm(c|xm) where ψ denotes the encoder parameters, part of which can be shared
with the encoder parameters φm of a unimodal VAE. The choice of Gaussian
posteriors allows us to employ the PoE as an aggregation layer for shared factors.
This allows the model to use M unimodal inference networks to handle all 2M

combinations of missing modalities for the inference of shared factors.

While the PoE is a well defined aggregation operation for shared factors, it is
not suitable for modality-specific factors, because it averages over representations
from different modalities.1 Therefore, we partition the latent space into M +
1 independent subspaces, one that is specific for each modality (denoted by
sm) and one that has shared content between all modalities (denoted by c), as
illustrated in Figure 1. The PoE is only used for the shared representation, so
modality-specific information is not forced through the aggregation layer.

1 This problem has also been observed in [21] where it is described as “averaging over
inseparable individual beliefs”.
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In theory, a partitioned latent space provides the possibility to encode both
modality-specific and shared information in separate subspaces; in practice,
however, objective LVAE does not specify what information (modality-specific
or shared) should be encoded in which subspace. For example, the first log-
likelihood term log pθ(x1 | c, s1) can be maximized if all information from input
x1 flows through the modality-specific encoder qφ(s1 | x1) and none through the
shared encoder. Thus, we posit that the model requires an additional objective
for disentangling modality-specific and modality-invariant information. Next, we
formalize our notion of disentanglement and introduce suitable contrastive ob-
jectives.

3.2 Disentanglement of c and s

We take an information-theoretic perspective on disentanglement and represen-
tation learning. Consider multimodal data to be a random variable X and let
h1(X) and h2(X) be two functions, each of which maps the data to a lower-
dimensional encoding. Consider the objective

max
h1,h2∈H

I(X;h1(X)) + I(X;h2(X))− I(h1(X);h2(X)) (3)

where I denotes the mutual information between two random variables and H
is the set of functions that we optimize over, for instance, the parameters of a
neural network. Objective (3) is maximized by an encoding that is maximally
informative about the data while being maximally independent between h1(X)
and h2(X). In our case, these two functions should encode modality-specific and
shared factors respectively. The proposed model learns such a representation by
using suitable estimators for the individual information terms.

The objective optimized by a VAE can be viewed as a lower bound on the mu-
tual information between data and encoding (e.g., see [1, 15]). However, on itself
a VAE does not suffice to learn a disentangled encoding, because of theoretical
limitations on disentanglement in an unsupervised setting [25]. So in addition,
we equip the VAE with two contrastive objectives: one that learns an encoding
of information shared between modalities, maximizing a lower bound on I(x; c),
and one that infers modality-specific factors by regularizing out shared informa-
tion from the latent space of a modality-specific VAE. The overall objective that
is being maximized is defined as

L = LVAE + γLshared − δLdisent (4)

where LVAE is the ELBO optimized by the VAEs, Lshared learns an encoding
of shared factors, Ldisent disentangles shared and modality-specific information,
and the hyperparameters γ and δ can be used to control these terms respectively.
The proposed objective estimates shared factors directly, while modality-specific
factors are inferred indirectly by regularizing out shared information from the
encoding of a modality-specific VAE. Further, as in the β-VAE [13], the re-
construction loss and KL-divergence contained in LVAE can be traded off to



Self-supervised Disentanglement of Modality-specific and Shared Factors 7

control the quality of reconstructions against the quality of generated samples.
Figure 1 shows a schematic of the network including all loss terms that are be-
ing optimized. In the following, we define the contrastive objectives used for the
approximation of the respective mutual information terms.

To learn shared factors, we use a contrastive objective [32, 10] that maxi-
mizes a lower bound on the mutual information I(x; c) (see Appendix A for the
derivation). We estimate the mutual information with the sample-based InfoNCE
estimator [29] adapted to a multimodal setting. The objective is defined as

Lshared := −E

[
1

K

K∑
i=1

log
ef(x

(i),x̃(i))

1
K

∑K
j=1 e

f(x(i),x̃(j))

]
(5)

where the expectation goes over K independent samples {x(i), x̃(i)}Ki=1 from
p(x, x̃) where x̃ is a subset of modalities x̃ ⊂ x and f is a critic that maps to a
real-valued score. In particular, we use an inner product critic fφ(x, x̃) = 〈c, c̃〉
where c and c̃ are the representations computed from a full multimodal sam-
ple and a subset of modalities respectively. Intuitively, the objective contrasts
between a positive pair coming from the same multimodal sample and K − 1
negative pairs from randomly paired samples [e.g., 11]. By using a large number
of negative samples, the bound becomes tighter [29], therefore we use a relatively
large batch size of K = 1024 such that for every positive, we have 1023 negative
samples by permuting the batch. In Appendix A we prove that the contrastive
objective is a lower bound on I(x; c) and we further discuss the approximation
as well as our choice of critic.

To regularize out shared information from the encoding of a modality-specific
VAE, we use a discriminator that minimizes the total correlation TC(c, sm), a
measure of statistical dependence between a group of variables. In the case of
two variables, the total correlation is equivalent to the mutual information. We
approximate the total correlation using the density-ratio trick [28, 34] and re-
fer to the approximation by Ldisent (see Appendix A). This procedure is very
similar to the one used by [20] with the important difference that we do not esti-
mate the total correlation between all elements in a single latent representation,
but between partitions c, sm of the latent space, of which c is shared between
modalities. In theory, one can use a single discriminator to minimize TC(c, s)
jointly, however, we found that in practice one has more control over the disen-
tanglement by using individual terms Ldisent = δm

∑
m Ldisent(c, sm) weighted

by separate disentanglement coefficients δm, instead of a global δ.

4 Experiments

In this section, we compare our method to previous multimodal generative mod-
els both qualitatively and quantitatively. In the first experiment, we use a bi-
modal dataset that has been used in previous studies and compare our method
to the MVAE [40] and MMVAE [31], the current state-of-the-art multimodal
generative models. In the second experiment, we go beyond two modalities and
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construct a dataset with 5 simplified modalities that allows us to analyze the
aggregation of representations across multiple modalities, which, to the best of
our knowledge, has not been done previously.

For the quantitative evaluation, we employ metrics that were used in previous
studies. Mainly, we focus on generative coherence [31], which takes a classifier
(pretrained on the original data) to classify generated samples and computes
the accuracy of predicted labels compared to a ground truth. For unconditional
samples, coherence measures how often the generated samples match across all
modalities. To measure the quality of generated images, we compute Frchet
Inception Distances (FIDs) [12]. It is important to note that a generative model
can have perfect coherence yet very bad sample quality (e.g., blurry images of
the correct class, but without any diversity). Analogously, a model can achieve
very good FID without producing coherent samples. Therefore, we also propose
to compute class-specific conditional FIDs for which the set of input images
is restricted to a specific class and the set of conditionally generated images
is compared to images of that class only. Hence, class-specific conditional FID
provides a measure of both coherence and sample quality. Finally, we evaluate
the quality of the learned representations by training a linear classifier on the
outputs of the encoders.

4.1 MNIST-SVHN

A popular dataset for the evaluation of multimodal generative models is the
MNIST-SVHN dataset [38, 31], which consists of digit images from two different
domains, hand-written digits from MNIST [22] and street-view house numbers
from SVHN [30]. The images are paired by corresponding digit labels, and sim-
ilar to [31] we use 20 random pairings for each sample in either dataset. The
pairing is done for the training and test sets separately and results in a training
set of 1,121,360 and test set of 200,000 image pairs. The dataset is convenient
for the evaluation of multimodal generative models, because it offers a clear sep-
aration between shared semantics (digit labels) and perceptual variations across
modalities. This distinctive separation is required for the quantitative evaluation
via generative coherence and class-specific conditional FID.

For a fair comparison to previous work, we employ the same architectures,
likelihood distributions, and training regimes across all models. The setup is
adopted from the official implementation of the MMVAE.2 For our model we
use a 20 dimensional latent space of which 10 dimensions are shared between
modalities and 10 dimensions are modality-specific.3 This does not increase the
total number of parameters compared to the MMVAE or MVAE where a 20
dimensional latent space is used respectively. All implementation details are
listed in Appendix C.

2 https://github.com/iffsid/mmvae.
3 The size of latent dimensions for modality-specific and shared representations is

a hyperparameter of our model. Empirically, we found the effect of changing the
dimensionality to be minor, as long as neither latent space is too small.

https://github.com/iffsid/mmvae
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(a) DMVAE (ours) (b) MMVAE (c) MVAE

Fig. 2: Comparison of conditionally generated SVHN samples given the respec-
tive MNIST digit in the first row. Across a column, we sample from the modality-
specific prior (our model) or from the posterior (other models). Only our model
keeps consistent styles across rows, as it disentangles modality-specific and
shared factors (without supervision).

Qualitative results. Figure 2 illustrates the conditional generation of SVHN
given MNIST. Only our method is capable of keeping consistent styles across
rows, because our model allows to draw samples from the modality-specific prior
without changing the shared representation computed from the input. For both
MVAE and MMVAE, we sample from the posterior to generate diverse images
along one column.4 One can already observe that our model and the MMVAE are
both capable of generating images with coherent digit labels, while the MVAE
struggles to produce matching digits, as already observed in [31]. The results are
similar for the conditional generation of MNIST given SVHN (see Appendix B),
demonstrating that our method is effective in disentangling modality-specific
and shared factors in a self-supervised manner.

Quantitative results. Since the setup of this experiment is equivalent to the one
used by [31] to evaluate the MMVAE, we report the quantitative results from
their paper. However, we decided to implement the MVAE ourselves, because
we found that the results reported in [31] were too pessimistic.

Table 1 presents linear latent classification accuracies as well as conditional
and unconditional coherence results. Across all metrics, our model achieves sig-
nificant improvements over previous methods. Most strikingly, joint coherence
improves from 42.1% to 85.9% as a result of ex-post density estimation. As
previously noted, it can be misleading to look only at latent classification and
coherence, because these metrics do not capture the diversity of generated sam-
ples. Therefore, in Table 2 we also report FIDs for all models. In terms of FIDs,

4 We further observed that without sampling from the posterior (i.e., reparameter-
ization) both the MVAE and MMVAE tend to generate samples with very little
diversity, even if diverse input images are used.
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Table 1: Results on MNIST/SVHN, where x1 corresponds to MNIST and x2
to SVHN. Numbers denote median values over 5 runs (standard deviations in
parentheses). For MMVAE, numbers are based on the original work and standard
deviations were computed with the publicly available code. For latent classifica-
tion, we use linear classifiers and for the DMVAE only the shared representation
is used (concatenation further improves the results).

Method
Latent accuracy (in %) Coherence (in %)
x1 x2 Aggregated Joint x1 → x2 x2 → x1

MVAE 79.8 (± 3.8) 65.1 (± 4.6) 80.2 (± 3.6) 38.0 (± 1.8) 31.8 (± 1.4) 57.1 (± 3.4)

MMVAE 91.3 (± 0.4) 68.0 (± 0.6) N/A 42.1 (± 1.9) 86.4 (± 0.5) 69.1 (± 2.5)

DMVAE 95.0 (± 0.6) 79.9 (± 1.4) 92.9 (± 1.8) 85.9 (± 1.0) 91.6 (± 0.8) 76.4 (± 0.4)

Table 2: Comparison of generative quality on MNIST/SVHN, where x1 corre-
sponds to MNIST and x2 to SVHN. Numbers represent median FIDs (lower is
better) computed across 5 runs with standard deviations in parentheses. For the
MMVAE, we computed FIDs based on the publicly available code.

Method
Unconditional FID Conditional FID Class-Conditional FID

x1 x2 x1 → x2 x2 → x1 x1 → x2 x2 → x1

MVAE 21.2 (± 1.1) 68.2 (± 1.9) 65.0 (± 2.2) 19.3 (± 0.4) 83.8 (± 1.8) 53.6 (± 1.9)

MMVAE 36.6 (± 3.1) 98.9 (± 1.5) 97.0 (± 0.6) 28.6 (± 1.1) 125.3 (± 0.8) 52.6 (± 4.8)

DMVAE 15.7 (± 0.7) 57.3 (± 3.6) 67.6 (± 4.0) 18.7 (± 0.9) 91.9 (± 4.4) 23.3 (± 1.0)

our model shows the best overall performance, with an exception in the condi-
tional generation of SVHN given MNIST, for which the MVAE has slightly lower
FIDs. However, looking at the results as a whole, DMVAE demonstrates a no-
table improvement compared to state-of-the-art multimodal generative models.
Ablations across individual loss terms are provided in Appendix B.

Ex-post density estimation [8], which we employ for sampling from the shared
space of the DMVAE, proves to be very effective for improving certain metrics
(Table 3). In particular, it can be used as an additional step after training,
to improve the joint coherence and, partially, unconditional FIDs of already
trained models. Note that ex-post density estimation does not influence any
other metrics reported in Tables 1 and 2 (i.e., latent classification, conditional
coherence, and conditional FID).

4.2 Paired MNIST

To investigate how well the aggregation of shared representations works for more
than two modalities, we create a modified version of the MNIST dataset, which
consists of M -tuples of images that depict the same digit. We view each image
in the tuple (x1, . . . , xM ) as coming from a different modality xm ∼ Xm, even
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Table 3: Comparison of sampling from the prior vs. using ex-post density esti-
mation with a Gaussian mixture model (GMM) with 100 components and full
covariance matrix. After training, the GMM is fitted on the embeddings com-
puted from the training data. For FIDs, the first number refers to MNIST, the
second to SVHN, respectively. Overall, ex-post density estimation improves most
metrics for both MVAE and MMVAE.

MVAE MMVAE DMVAE
Sampling FIDs Coherence FIDs Coherence FIDs Coherence

Prior 21.2 / 68.2 38.0 36.6 / 98.9 42.1 N/A N/A
GMM 13.4 / 73.7 68.5 28.7 / 119.7 80.3 15.7 / 57.3 85.9

though each instance is drawn from MNIST. Further we perturb each image
with a high degree of Gaussian noise, which makes it difficult to infer digit
labels from a single image (for an example, see Appendix B), and train the
models as denoising variational autoencoders. We use comparable architectures,
likelihoods, and training regimes across all methods. All implementation details
are provided in Appendix C.

The dataset is generated by repeatedly pairing M images with the same label.
We vary M = 2, ...5 to investigate how the methods perform with an increasing
number of modalities. This pairing is done separately for training and test data
and results in 60,000 and 10,000 image M -tuples for the training and test sets
respectively. The resulting dataset offers a simple benchmark that requires no
modality-specific weights for the likelihood terms, has a clear characterization of
shared and modality-specific factors, and allows visual inspection of the results.5

The goal of this experiment is to test whether models are able to integrate
shared information across multiple modalities and if the aggregated representa-
tion improves with more modalities. To the best of our knowledge, experiments
evaluating the aggregation with more than two modalities have not been per-
formed before. Unlike the previous experiment, paired MNIST allows measuring
how well models generate a missing modality given two or more inputs. To
quantify this, we measure the average coherence over leave-one-out mappings
{xi}i 6=j → xj . Further, we compute the average class-specific conditional FID
over leave-one-out mappings, which combines both coherence and generative
quality in a single metric.

Figure 3 presents the results for an increasing number of input modalities.
The left subplot shows that for the MVAE and DMVAE leave-one-out coherence
consistently improves with additional modalities, supporting our hypothesis that
the PoE is effective in aggregating shared information. Notably, the MMVAE fails
to take advantage of more than two modalities, as it does not have a shared repre-
sentation that aggregates information. The right subplot shows that the DMVAE
outperforms the other methods in class-specific conditional FIDs, demonstrating

5 Note that the weights of likelihood terms have been observed to be important hy-
perparameters in both [40] and [31].
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Fig. 3: Results on paired MNIST with varying number of “modalities”. Markers
denote median values, error-bars standard deviations, computed across 5 runs.
Left: Leave-one-out conditional coherence (higher is better). Right: Class-specific
conditional FIDs (lower is better).

that it can achieve both high sample quality and strong coherence. We provide
further metrics and ablations for this experiment in Appendix B.

5 Conclusion

We have introduced DMVAE, a novel multimodal generative model that learns a
joint distribution over multiple modalities and disentangles modality-specific and
shared factors completely self-supervised. The disentanglement allows sampling
from modality-specific priors and thus facilitates the aggregation of shared in-
formation across modalities. We have demonstrated significant improvements in
representation learning and generative performance compared to previous meth-
ods. Further, we have found that ex-post density estimation, that was used to
sample from the shared latent space of the DMVAE, improves certain metrics
dramatically when applied to trained models from existing work. This suggests
that the latent space learned by multimodal generative models is more expressive
than previously expected, which offers exciting opportunities for future work.
Moreover, the DMVAE is currently limited to disentangling modality-specific
and shared factors and one could extend it to more complex settings, such as
graphs of latent factors.
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