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Abstract—Autonomic peripheral activity is partly governed
by brain autonomic centers. However, there is still a lot of
uncertainties regarding the precise link between peripheral and
central autonomic biosignals. Clarifying these links could have a
profound impact on the interpretability, and thus usefulness, of
peripheral autonomic biosignals captured with wearable devices.

In this study, we take advantage of a unique dataset consist-
ing of intracranial stereo-electroencephalography (SEEG) and
peripheral biosignals acquired simultaneously for several days
from four subjects undergoing epilepsy monitoring. Compared
to previous work, we apply a deep neural network to explore
high-dimensional nonlinear correlations between the cerebral
brainwaves and variations in heart rate and electrodermal
activity (EDA). Further, neural network explainability methods
were applied to identify most relevant brainwave frequencies,
brain regions and temporal information to predict a specific
biosignal.

Strongest brain-peripheral correlations were observed from
contacts located in the central autonomic network, in particular
in the alpha, theta and 52 to 58 Hz frequency band. Furthermore,
a temporal delay of 12 to 14 s between SEEG and EDA signal was
observed. Finally, we believe that this pilot study demonstrates
a promising approach to mapping brain-peripheral relationships
in a data-driven manner by leveraging the expressiveness of deep
neural networks.

I. INTRODUCTION

With the latest advancements in sensing devices and ma-
chine learning, it is possible to gather and analyse increasing
amounts of information about human activity at various lev-
els [1]. Exploring connections between brain and peripheral
physiological signals could improve the utility of peripheral
biosignals at health monitoring [2] and capturing the state of
the human brain.
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Frick, T., Hubbard, I., Vogt, J. E., Brunschwiler, T., & Ryvlin, P. (2021).
Exploring Relationships between Cerebral and Peripheral Biosignals with
Neural Networks. In 2021 IEEE International Conference on Digital Health
(ICDH) (pp. 103-113). IEEE. doi: 10.1109/ICDH52753.2021.00022

Previous studies focusing on the relationships between brain
and peripheral biosignals have either utilised conventional
statistical models, such as multiple linear regression [3], or
have outlined their own mechanistic models supported by
experimental findings [4], [5].

In this paper, we present a machine learning
pipeline for analysing the relationship between stereo-
electroencephalography (SEEG) and peripheral signals,
i.e. heart rate and electrodermal activity (EDA). It relies
on convolutional neural networks (CNNs) [6] to find
dependencies between high-dimensional time-series data and
to infer complex relationships between the brain and peripheral
signals acquired from the SEEG electrodes and an Empatica
E4 wearable wristband [7]. To improve interpretability of
our analysis and elucidate inferred relationships, we utilise
gradient-based and remove-and-retrain network explanation
techniques [8]. Our approach allows identifying brain regions
most closely related to different bodily functions as well as
disentangling the contributions of specific features within
these signals. To the best of our knowledge, this pilot study
is a first attempt to utilise deep neural networks to model
brain-peripheral relationships.

In Section II of this paper, we provide the background
on time-series prediction, explainability methods, neural net-
works for EEG data, and previous studies focusing on brain-
peripheral relationships. The experimental setup with the
resulting dataset and the analysis pipeline are explained in
Section III. The findings of this study are provided and
discussed in Sections IV and V.

II. BACKGROUND & RELATED WORK

A. Time-series Prediction Using Neural Networks

In our analysis, we investigate the relationship between pe-
ripheral and SEEG signals by training and validating predictive
neural-network-based models. Currently, deep neural networks
are ubiquitous in machine learning applications [9], including
time-series prediction and forecasting [10]. Conventional neu-
ral network approaches to modelling and predicting time-series
data include recurrent neural networks (RNN) [11], long short-
term memory (LSTM) [12], and temporal convolutional net-
works [13]. They allow capturing patterns in high-dimensional
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time-series with complex, nonlinear dynamics. For instance,
Ahmed et al. [14] compared various machine learning time-
series forecasting techniques empirically, including regression
trees, support vector regression, Gaussian processes, and mul-
tilayer perceptrons. They found that neural networks alongside
with Gaussian processes were able to discover more complex
relationships and hence, performed better at forecasting.

B. Neural Network Explainability Methods

While deep neural networks excel at finding complex re-
lationships between input features and the output [15], their
significant drawback when compared to classical time-series
models [16] is that they are “black boxes” [17], [18]. In
particular, it is difficult to disentangle which features a neural
network uses to predict a specific output value [17]. For our
analysis, it is essential to identify the most relevant features
and to understand how the input and output signals are linked.
Herein, we provide a brief overview of relevant techniques that
are utilised to “explain” predictions made by neural network
models.

1) Perturbation-based Methods: Perturbation-based expla-
nations provide an attribution for input features by masking or
altering inputs and quantifying the resulting change in the out-
put [19], [20], [21]. Such approaches are commonly referred
to as “occlusion”. They allow measuring the importance of
different input features in a neural network post hoc without
retraining or adjusting the model.

2) Gradient-based Methods: Gradient-based methods [8]
utilise neural network gradients to examine the influence
of hidden and input units by backpropagating through the
network. They assign an importance score to each neuron
for different outcomes. For example, DeepLIFT [17] is a
backpropagation-based method that uses a neutral baseline
input, e.g. an all-black image, to compare neuron activations
against the reference value resulting from the given baseline.

3) Remove-and-retrain: Another approach to quantifying
the importance of input features is to compare networks
trained on different subsets of the original features [22]. By
retraining the network and comparing the performance of
different models it is possible to identify features that are
crucial for predicting the output [22].

C. Neural Networks for EEG data

While no prior work has explored a general relationship
between SEEG and peripheral signals captured from wearables
using deep neural networks, applications of neural networks
to EEG data are abundant. Most classification tasks for EEG
signals fall into six categories [23]: sleep stage scoring [24];
seizure detection [25], [26], [27], [28]; emotion recognition
[29], [30], [31]; mental workload estimation [32], [33]; and
other applications [34], [35], [36]. The latter include depres-
sion screening [36], Alzheimer’s disease detection [34], and
gender classification [35].

Prior work utilises various EEG signal features and rep-
resentations [23]. Some approaches focus on the raw signal
[37] or averages of several signals [25]. It is also common

to extract handmade features [38] or to combine them with
the raw signal. Another approach is to convert the EEG
time-series to 2D image-like representations, e.g. spectrograms
[24], colour scale topology [39], Fourier feature maps [40] or
2D/3D correlation grids [41]. Spectrograms are arguably the
most prevalent choice among 2D representations of the EEG
signal [23]. While representations of input signals differ across
various architectures and tasks, the frequency range that the
models focus on tends to be between 0.5-60 Hz [23].

Model architectures vary across different feature extrac-
tion strategies, including deep belief networks [42], recurrent
neural networks [43], stacked autoencoders [44], multilayer
perceptrons [45], CNNs [24], [46], and hybrid architectures
[47], which combine multiple approaches.

Particularly relevant to our work is the Sleep Phase Identifi-
cation with Neural networks for Domain-invariant LEearning
(SPINDLE) pipeline, proposed by Miladinović et al. [24].
SPINDLE uses 2D convolutional filters in a CNN to extract
relevant features from preprocessed EEG spectrograms. In
this paper, we combine SPINDLE’s preprocessing and its
architecture with the AlexNet network [48] to extract relevant
features from SEEG data.

D. Brain-peripheral Relationships

There exists a rich body of literature on the relationships
between brain and peripheral biosignals. Herein, we provide
a summary of biological background and findings relevant to
our analysis.

1) Central Autonomic Network: The central autonomic
network (CAN) is a brain region in charge of the behavioural
responses essential for survival, as shown experimentally by
Benarroch [4]. CAN consists of the insular cortex, amygdala,
hypothalamus, periaqueductal gray, parabrachial complex, the
nucleus of the solitary tract (NTS), and the ventrolateral
portions of the medulla [4].

2) Heart Rate: In particular, the insular cortex and amyg-
dala were found to have the strongest autonomic control of the
body, including the cardiac responses [4]. This was further
confirmed by Thayer et al. [5]. Their findings show that
there are two regions of the brain that have a relationship
with the heart rate’s emotional responses: the cingulate cortex
and the ventromedial prefrontal cortex. Furthermore, there
is increasing evidence for a connection between the insular
cortex and cardiac responses [49], [50]. To sum up, previous
studies show that changes in heart rate are linked with activity
in the CAN area of the brain. However, an exact form of this
relationship and relevant cerebral signal features remain still
unknown.

3) Sweat Response: Fredrikson et al. [3] investigated the
forebrain relationship with sweat level responses. They found
that electrodermal activity was related to the cingulate cortex,
secondary visual cortex, and right inferior parietal cortex, with
the strongest relationship to the right insular cortex, which is a
part of the CAN region. Furthermore, Farrell et al. [51] found
that there are several areas linked to thermogenic sweating,
including the insula, anterior and posterior cingulate cortex,



Fig. 1. Schematic of the experimental setup including all recording devices
worn by patients. The CT scan depicts SEEG electrode placement for patient
1. The peripheral biosignal recordings were made by the Empatica E4
wristband [54] placed on patient’s non-dominant hand.

premotor cortex, thalamus, lentiform nuclei, and cerebellum.
Other areas were more prevalent during psychogenic sweating
events: midcingulate cortex, parietal cortex, premotor cortex,
occipital cortex, and cerebellum. Other studies have also
suggested links between changes in electrical conductance of
the skin and the insula [52], [53].

III. METHOD

In this section, we provide a brief summary of the dataset
and outline the complete data analysis pipeline applied to the
SEEG and peripheral data.

A. Experimental Setup & Data Overview

The data includes intracranial SEEG (DIXI Medical,
France) recorded at Lausanne University Hospital (CHUV),
Switzerland. Four epileptic patients underwent epilepsy mon-
itoring during several days prior to brain surgery, and SEEG
electrodes were placed in the suspected seizure onset zones
specific to each patient. On top of the cerebral monitoring, a
wearable wrist device (E4, Empatica, US) was worn to capture
peripheral biosignals. A schematic of the overall experimental
setup is shown in Figure 1. Table I provides an overview
of the characteristics of the four patients enrolled in the
study. Age, gender, and BMI were not controlled for when
choosing subjects. All patients gave written informed consent,
and the research was approved by the local ethical committee
(ref. 2020-01818). The recordings lasted between three to
seven days and include both day- and nighttime. During the
recordings, patients were allowed to move freely in the hos-
pital. Since we focus on the general relationship between the

Fig. 2. The analysis pipeline for exploring relationships between SEEG and
peripheral signals in patients undergoing intracranial EEG recordings.

peripheral and cerebral biosignals, we only consider regular
inter-ictal periods.

Patient Age, yr Gender BMI, kg/m2

1 41 Male 39.2
2 18 Female 20.4
3 40 Male 23.5
4 26 Female 24.7

TABLE I
OVERVIEW OF THE PATIENTS ENROLLED IN THE STUDY.

Each of the SEEG electrodes has several contact points
(see Figure 1). These contact points measure and record the
electrical potential in the brain. They are numbered from 1 to
N , where 1 corresponds to the deepest contact in the brain
and N is closest to the skull, with the prefix indicating the
specific electrode. One electrode usually penetrates multiple
brain-regions, therefore, it is important to account for the
location of the specific contact points, rather than performing
the analysis in an electrode-wise manner.

The peripheral signal measurements came from an E4
wristband (Empatica [54], US) located on the patient’s non-
dominant hand. It was replaced by a new fully charged
wristband every 24 hours. Patients were instructed to wear
the wristband at all times, except when they had to take it off,
for instance, during shower.

B. The Analysis Pipeline

The analysis pipeline consists of four stages shown in
Figure 2: (i) the preprocessing of the respective signals; (ii)
the neural network training and validation; (iii) application of
the explainability methods to identify important features; (iv)
and finally, attributing identified relationships to relevant brain
regions. Our holistic approach can unravel nonlinear interac-
tions between the signals that classical time-series analysis
methods, e.g. see [16], would not detect and at the same
time, allows exploring these relationships further by explaining
neural network predictions.

We consider two peripheral biosignals as the target vari-
ables: (i) heart rate and (ii) electrodermal activity. We treat
both of them independently. They serve as the target variables
which the neural network predicts using a spectrogram-based



representation of the SEEG data. Thus, we perform supervised
learning for a time-series regression task.

1) Preprocessing: Both the SEEG recordings and the pe-
ripheral signals contain unwanted biological artefacts, which
originate from the patient internally, as well as the ambient
environment. Therefore, preprocessing is crucial for the down-
stream analysis. All of the preprocessing described below is
performed in the MATLAB (v.2020a) computing environment.

a) Artifact Removal & Preprocessing of the SEEG Sig-
nals: In our analysis, we focus on five frequency bands of
EEG signals: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13
Hz), beta (13-30 Hz), and gamma (30-100 Hz) [55].

We down-sample the SEEG signal from 1024 to 256 Hz
by applying a low-pass filter to prevent aliasing (fifth-order
Butterworth filter with a cut-off frequency of 128 Hz). This is
followed by a cascaded integral comb with compensation filter
[56] and decimation (down-sampling). Henceforth, the SEEG
sampling rate will be 256 Hz, unless mentioned otherwise. A
notch filter is applied at 50 Hz to remove the line noise.

Since this analysis focuses on the general relationship
between the cerebral and peripheral biosignals, time instances
where the behaviour is abnormal, e.g. ictal phases as labeled
by physicians, are discarded. To ensure that the data does
not contain any outliers due to the pre- and post-ictal phases,
segments 5 minutes prior and 20 minutes after each annotated
ictal phase were removed as well.

Following the approach of SPINDLE [24], the SEEG time-
series is converted into a time-frequency representation by ap-
plying the discrete short-time Fourier transform (STFT) [57].
For each channel, the STFT is computed using a two second
(512 samples) periodic Hamming window with a step size of
125 milliseconds (32 samples) on the down-sampled SEEG
signal. A Hamming window is used to reduce the edge effects
[24]. In the time-frequency domain, the squared magnitude of
the STFT is taken yielding the power spectral density (PSD).
The PSD is further log-transformed and then standardised for
each frequency to zero-mean and unit-variance.

Multiple standardised frequency windows are concatenated
together producing a feature map that describes frequencies
over several seconds. These signals are split into 16-second
intervals, containing the PSD for every frequency from 0.5 to
64 Hz (with a frequency resolution of 0.5 Hz). These feature
maps or images are stacked (one feature map per contact point)
before they are fed into the CNN. Although the resulting
images contain the same information as the 2D signal, we
have found that it is easier for the CNN to extract relevant
features from the time-frequency representations.

b) Artifact Removal & Preprocessing for Peripheral Sig-
nals: During data acquisition, the patients were instructed
to keep the wristband on them at all times. However, there
were exceptions to this. For example, the Empatica E4 is not
designed to withstand water [54], so patients were allowed
to remove the wristband when necessary. When the wristband
was off, the temperature recording from the thermophile sensor
dropped to within 2◦C of ambient temperature (22◦C), while
the acceleration remained constant. We remove all of these

time periods using the information from the temperature and
acceleration sensors.

One of the peripheral signals we consider is the elec-
trodermal activity. The EDA signal refers to the variation
of the skin’s electrical conductance (SC), which changes
depending on the patient’s sweat level. SC time-series can
be characterized by a slowly varying tonic and a fast-varying
phasic activity. To investigate the relationship between the
brain and the instantaneous skin conductance changes, the raw
EDA signal is preprocessed to remove the slow varying tonic
part [58]. The tonic proportion is estimated using nonnegative
deconvolution [58] followed by smoothing with a Gaussian
window. After that the phasic signal is found by subtracting
the tonic proportion from the original SC signal. These steps
are performed using the skin conductance analysis software
developed by Ledalab (v. 3.4.9) [59].

Finally, the preprocessed measurements of the peripheral
signals at the end of each SEEG time-window are used as
the target variable for the CNN (see Figure 3). This way, the
network is given SEEG information from up to 16 seconds
prior to the peripheral signal it tries to predict.

2) Convolutional Neural Network: By converting the cere-
bral biosignals to time-frequency representations it is possi-
ble to leverage 2D CNN architectures. We propose a CNN
architecture, inspired by SPINDLE [24] and AlexNet [48].
By training and validating this neural network we investigate
whether it is possible to predict peripheral signals using
SEEG. While there exist more performant neural network
architectures for time series regression, e.g. RNNs and LSTMs,
in this analysis, we focus on assessing relationships between
signals, rather than achieving the best possible predictive per-
formance. Moreover, it is essential that the chosen architecture
is amenable to the application of the explanation techniques
mentioned before.

The overall architecture of the proposed network has the
same number of layers as AlexNet (8 layers). The layers
are modified to better fit features from spectrograms and the
different input dimensionality. The model is adjusted to take N
signals as inputs, depending on the number of specific contact
points implanted in a patient. The first layers of the network
are taken from the SPINDLE’s CNN architecture [24].

Each of the N contact points is represented as one input
spectrogram. Thus, the input dimensions are 128× 128×N .
The first two dimensions represent time (0-16 seconds prior
to the predicted signal value) and frequency (0.5-64 Hz),
respectively. The network consists of four convolutional layers,
followed by four fully connected layers that predict a nor-
malised value between 0 and 1. A schematic of the network is
shown in Figure 3. In images, neighbouring pixels often belong
to the same object. This is not the case in spectrograms, where
the different frequencies are often non-locally distributed [60].
Therefore, similar to previous networks operating on spectro-
grams [24], [61], [62], our CNN has smaller kernels in the
first layers, since more extensive areas of feature retrieval are
unnecessary.

Unlike most convolutional networks, our model has a rela-



Fig. 3. The network architecture, based of AlexNet [48] and SPINDLE [24]. The overall architecture is adapted from AlexNet, while the first two layers are
similar to SPINDLE. Green layers represent max-pooling, while the red represent 2D convolutions. The blue layers are fully connected. Time is introduced
as an additional feature to each of the fully connected layers, to account for the circadian rhythm.

tively large input space, with N channels, N ranging from 69
to 217 across patients. The significantly larger input size makes
it unfeasible to use only one convolutional layer, as proposed
in SPINDLE [24]. A large amount of input spectrograms also
makes it necessary to increase the number of filters compared
to the traditional AlexNet architecture. The filter sizes are then
decreased in the last convolutional layer to make the feature
space in the fully connected layers smaller. Furthermore, time
of the day is introduced as an additional feature into each
of the fully connected layers, to account for SEEG patterns
specific to the circadian rhythm.

The convolutional layers (shown in red in Figure 3) im-
plement m filter operations of size 3× 3. After the filter, the
rectified linear unit (ReLU) activation is applied to all neurons
independently. Max-pooling layers down-sample the features
by only choosing the maximal value of the non-overlapping
rectangles of size 2×2. Batch normalisation and dropout layers
are added to prevent overfitting. The time features, introduced
in the fully connected layers, are encoded as cos(·) and sin(·)
of the day time, to result in a differentiable periodic signal.
Finally, mean squared error (MSE) loss function is used when
training the network.

The model is implemented in Python (v.3.8.3) programming
language using the PyTorch (v. 1.8) machine learning library
[63].

3) Training & Testing: To test whether an association
between the input SEEG and the output peripheral signal is
significant, we evaluate the networks predictive performance
on unseen data. The dataset is split temporally into training and
test sets, 80% and 20%, respectively. Unlike in standard train-
test split, training and test sets are kept as separate temporal
intervals to avoid overly optimistic results due to a strong
correlation between training and test data points, for a detailed
discussion see [64]. We train and validate a separate model
for each subject and adjust the architecture to account for the
different input sizes due to the differing numbers of contact
points across subjects. To better assess the performance of our
models across multiple time periods [65], we conduct K-fold
cross-validation with K = 5 separate train-test splits.

The neural networks are trained for 10 epochs using Adam

optimiser with a mini-batch size of 16 and a learning rate
of 0.0001. We did not observe further improvements in
performance on withheld data from longer training. These
parameters are tuned manually on withheld data. The parame-
ters are tuned to achieve the highest R2 (the coefficient of
determination) score [66]. The coefficient of determination
usually ranges between 0 to 1, where 1 indicates a perfect
model fit. We use this metric to assess the models fit and the
strength of the relationships between inputs and outputs.

4) Identifying Important Features & Brain Regions: To
identify which features and brain regions are most closely
related to peripheral biosignals we use several explainability
methods. In the time-frequency domain, the DeepLIFT [17]
method is applied to produce attribution maps for all fre-
quencies and time intervals of the spectrogram. As mentioned
before, DeepLIFT requires providing a baseline sample. Dur-
ing our experiments, different baselines were tested yielding
similar attribution maps, therefore, a value of 0 is used as a
baseline for all spectrogram features. Due to the architecture of
our neural network, it is not possible to directly use DeepLIFT
attributions to quantify the importance of entire brain regions.
Therefore, we resort to the remove-and-retrain approach by
removing subsets of contact points corresponding to relevant
regions of the brain, such as hippocampus, white matter, and
insula.

IV. RESULTS

As mentioned before, our analysis focuses on training neural
network models to predict the heart rate and EDA based on
SEEGs and validating these models to establish whether learnt
dependencies are significant. In the following subsections, we
provide the results for the two peripheral biosignals.

A. Relationship between SEEG and Heart Rate

Table II contains R2 scores achieved by the model in 5-fold
cross-validation, for both the raw and low-pass filtered heart
rate signal. The low-pass peripheral signal is extracted using
a fifth order Butterworth filter with a cut-off of 25 seconds.
As can be seen, the model predicts the heart rate of patients
1 and 4 with a much higher R2 score than for patients 2
and 3. Note, that the patients with contact points in the CAN



Fig. 4. Predicted vs. actual heart rate for patient 1. The top graph shows the
raw signals, while the bottom graph contains low-pass filtered signals.

region consistently have an R2 score greater-than 0. In fact,
the score is significantly greater-than 0 for patients 1, 3, and
4 (t-test p < 0.025). For patient 2, we observe no significant
relationship between SEEG and the heart rate (t-test p > 0.05).
In general, the model can predict slow changes in heart rate
much better than short excursions, as signified by the larger
low-pass score.

R2 score (±SD)
Patient CAN Full signal p Low-pass

1 3 0.268(±0.187) 0.016 0.436(±0.236)
2 7 0.052(±0.141) 0.228 0.120(±0.228)
3 3 0.093(±0.047) 0.006 0.298(±0.139)
4 3 0.285(±0.197) 0.016 0.454(±0.279)

TABLE II
CROSS-VALIDATED R2 SCORE FOR THE FOUR PATIENTS WHEN

PREDICTING THE HEART RATE BASED ON SEEG SIGNALS. THE MODEL IS
TRAINED AND TESTED ON FIVE DIFFERENT TIME INTERVALS (80% TRAIN,

20% TEST). R2 SCORE IS MEASURED ON THE RAW DATA (“full signal”)
AND ON THE LOW-PASS FILTERED TARGET AND PREDICTED SIGNALS.

STANDARD DEVIATIONS (SD) ARE TAKEN ACROSS 5 TEST FOLDS.

Figure 4 shows the predicted against ground truth peripheral
signal. For both the raw and low-pass filtered signals, predic-
tions appear to agree with the ground truth values. Similar
observations can be made for the other patients. Since our
model does not have any memory of earlier time stamps,
overall, we conclude that it is possible to predict patient’s ap-
proximate heart rate purely based on the instantaneous SEEG
signal. This implies that the SEEG signals are associated with
instantaneous heart rate changes.

When inspecting the R2 score across different test folds
(see standard deviations in Table II), it can be seen that the

Fig. 5. Residuals vs. fitted values for the heart rate prediction in patient 1.
Colours indicate the wakefulness status of the patient. Green denotes data
points labelled awake and blue denotes data points labelled asleep.

model performs considerably worse on some folds (hence, a
large SD). We observe that the model performs worse when the
subjects are awake. It is possible that subject’s wakefulness is a
confounder in our analysis and some of the performance of our
models might be attributed to detecting the wakefulness status.
Nevertheless, our models still manage to retrieve relevant
information for the patients with contact points in the CAN
region and produce somewhat reliable prediction during the
daytime period alone.

The latter finding is aligned with the residual analysis
(see Figure 5). Tests sets with data from both sleep and
wakefulness periods show that the predictions form two dis-
tinct clusters correlated with the sleep/wakefulness state of
the patient. Those states are derived using the peripheral
device’s accelerometer by detecting the periods when the
patient remained still. This is cross-referenced with the other
sensors. Note, that our wakefulness/sleep labels are merely a
proxy.

Using explanation methods described before, we can ex-
plore which features are utilised by the network to predict the
heart rate. Figure 6 shows most influential input features when
predicting the heart rate from the SEEG spectrograms. The
figure was produced for patient 1, but similar attribution maps
were observed for all other patients. The most relevant features
reside in the alpha and beta frequency ranges, while some
useful information can also be found in higher frequencies
(around 55 Hz).

Brain region explanations are derived by intrasubject model
performance analysis through retraining of the network (see
Figure 7). The results further confirm that the network per-
forms best with signals originating from the CAN region.

In particular, the network performs well when only using
the information from the insula (anterior, middle, and posterior
gyrus), despite the low number of contacts in that brain region,
as indicated in Figure 7.

B. Relationship Between SEEG and Electrodermal Activity

We now explore the relationship between SEEG and the
phasic activity in EDA. The low-pass peripheral signal is again



Fig. 6. Focus of the netowrk when predicing the heart rate from the
spectrogram for patient 1. The attribution map is produced using DeepLIFT
[17] and averaged across the whole testing period. A baseline of 0 is used
for all inputs.

Fig. 7. R2 score obtained by the network when retraining on specific contact
points located in different brain regions.

extracted using a fifth order Butterworth filter with a cut-
off of 25 seconds. Table III provides an overview across all
patients for predicting the phasic driver of the EDA signal.
Interestingly, a similar tendency is reflected in these results as
for the heart rate (cf. Table II). Patients 1 and 4 have a stronger
association between the SEEG and EDA with relatively higher
R2 scores. Indeed, for these patients the cross-validated R2

score is significantly greater-than 0 (t-test p < 0.025).

R2 score (±SD)
Patient CAN? Full signal p Low-pass

1 3 0.425(±0.106) 0.001 0.397(±0.111)
2 7 -0.369(±0.700) 0.152 -1.891(±3.784)
3 3 0.001(±0.262) 0.497 -0.104(±0.740)
4 3 0.205(±0.156) 0.021 0.338(±0.219)

TABLE III
CROSS-VALIDATED R2 SCORE FOR THE FOUR PATIENTS WHEN

PREDICTING THE PHASIC DRIVER OF EDA BASED ON SEEG SIGNALS.
THE MODEL IS TRAINED AND TESTED ON FIVE DIFFERENT TIME

INTERVALS (80% TRAIN, 20% TEST). R2 SCORE IS MEASURED ON THE
RAW DATA (“full signal”) AND ON THE LOW-PASS FILTERED TARGET AND

PREDICTED SIGNALS. STANDARD DEVIATIONS (SD) ARE TAKEN ACROSS 5
TEST FOLDS.

Fig. 8. Predicted vs. actual phasic driver signal for patient 1. The top graph
shows the raw signals, while the bottom graph contains low-pass filtered
signals.

Figures 8 and 9 shows the full and low-pass filtered predic-
tions vs. ground truth signal of the phasic driver (EDA) for
patients 1 and 2. For patient 2 (average R2 < 0), the model is
unsuccessful at predicting large EDA peaks which correspond
to sweat glands opening. For patient 1 (average R2 = 0.425),
however, network’s predictions follow the magnitude of the
phasic driver comparatively well. In this case, the model is
clearly able to predict when the the sweat glands open and
the overall strength of the phasic driver.

We again examine which SEEG features are most dominant
in predicting the EDA signal. Clearest patterns could be
observed for patient 1, for whom the model exhibits good
performance. Most relevant features lie in the alpha and beta
frequency ranges, similarly to the most dominant features
in predicting the heart rate (Figure 10). Additional relevant
features can be observed in the higher frequency band around
55 Hz. Furthermore, feature relevance is time dependent,
indicating a time delay between the SEEG and EDA signals,
where the phasic driver of the EDA signal lags from the SEEG
by around 12-14 seconds. This is very different from the time-
invariant attribution map obtained for the heart rate (cf. Figure
6).

By retraining the model on specific contact points in patient
1, we identify strongest performance achieved by contact
points located in the insula (CAN) (see Figure 11), similarly to
the heart rate response. The highest test R2 score is achieved
when using the middle and posterior gyrus of the insula. In this
patient, the hippocampus is the most epileptic region which



Fig. 9. Predicted vs. actual phasic driver signal for patient 2. The top graph
shows the raw signals, while the bottom graph contains low-pass filtered
signals.

Fig. 10. Normalised absolute DeepLIFT attribution map averaged across all
SEEG spectrogram inputs when predicting the EDA for patient 1. A baseline
of 0 is used for all inputs.

Fig. 11. R2 score obtained by the network when retrained on specific contact
points located in different brain regions for predicting the phasic EDA signal
in patient 1.

might be the reason for the lower R2 score of the models
based on contact points in it. We can also see that signals
from the white matter, covering a large region of the brain,
are predictive of the sweat response.

V. DISCUSSION

This analysis is one of the first attempts to study the relation-
ship between cerebral and peripheral physiological signals in
a purely data-driven fashion leveraging the flexibility of deep
neural networks. Following a supervised learning approach
with the aid of neural network explainability techniques, we
are able to capture and elucidate some significant relationships
between peripheral and SEEG signals.

A. Findings

In most patients, our model is able to predict instantaneous
heart rate changes fairly well. Some of its predictive power is
likely related to the wakefulness status, i.e. the model is able
to determine a decrease in heart rate induced by sleep based
on the SEEG signals. This clearly agrees with the previous
work demonstrating the efficacy of neural networks at sleep
stage scoring [46], [24]. While this confounder cannot be ruled
out completely, we observe that in most patients, the model
captures patterns that are more complex than mere wakefulness
status. We also find that the patients with contact points
in the insula’s CAN region feature a considerably stronger
association between the heart rate and SEEG than the patients
lacking contact points in this area. Particularly, for patient 2,
who had all of the electrodes placed in areas that are further
away from the CAN region, no significant relationship was
found between the brainwaves and both of the peripheral
signals. This finding aligns well with the prior research [4],
[67], [68], [49], [50]. Nevertheless, the model can still predict
the heart rate using the non-CAN region contact points in other
subjects. However, these contacts are in close proximity of the
insula, and might still pick up signal from that area – this might
be the reason for the relatively good performance, shown in
Figure 7. Furthermore, using DeepLIFT attribution, we show
that the heart rate is associated with the theta (4-8 Hz), alpha
(8-13 Hz), and lower beta (13-20 Hz) frequency ranges, as



well as the higher frequencies (53-60 Hz). Frequencies outside
these ranges are less relevant to the predictive model.

Another peripheral signal we explored in this analysis was
the sweat response measured by the EDA signal’s phasic
driver. The EDA is visibly less affected by the wakefulness
status of the patient. Nevertheless, the model is able to predict
this signal well on patients who had the contact points in the
insula. Similarly to the heart rate, this resonates with previous
findings described in [52], [4], [53], [68], [69], [67], [51]. For
the EDA, the lower frequency bands are useful for prediction,
especially the theta (4-8 Hz) and alpha (8-13 Hz) waves. This
relationship is especially strong for patient 1. We also observe
an apparent time delay in the attribution maps, suggesting a
considerable delay, of approx. 12 to 14 seconds, between the
SEEG signals and the sweat response recorded from the hand.
This delay should be investigated further.

The patients selected for this study were both male and
female aged 18-40 years with BMI between 20 and 40 kg/m2

(see Table I). We did not observe a significant correlation
between any of the mentioned patient characteristics and
the strength of association between cerebral and peripheral
biosignals. Moreover, we do not expect these characteristics to
be confounders, since the analysis was conducted by training
patient-specific models.

These main findings of our analysis are summarised in
Table IV.

Biosignal Heart Rate Sweat Response
Strongest brain region

relationship CAN CAN

Frequencies of
interest

Alpha, Theta
and 52-58 Hz

Alpha, Theta
and 52-58 Hz

Temporal dependency invariant
12-14 seconds delay

between neuron firing and
sweat glands burst

TABLE IV
SUMMARY OF FINDINGS ABOUT BRAIN-PERIPHERAL RELATIONSHIPS.

B. Limitations

This pilot study is a preliminary exploratory analysis which
only includes four patients. Both a larger sample size and
external validation are necessary to confirm our findings. The
current analysis focuses on rather large brain regions; whereas
it would be interesting to further localise relationships between
the brain and peripheral biosignals by performing per contact
point analysis within the the insula region.

VI. CONCLUSION

To the best of our knowledge, this is the first study
correlating cerebral with peripheral biosignals applying deep
neural network models, with the capacity of representing
high-dimensional and nonlinear relations. In contrast, earlier
studies applied simplified mechanistic models supported by
experiments or utilized multivariate linear regression models.
Furthermore, we have demonstrated the applicability of ex-
plainability methods, enabling a data-driven approach in the

discovery of novel patterns, governing the relation between
the brain and peripheral biosignals.

The proposed analysis pipeline consists of (i) signal pre-
processing to yield spectograms from SEEG recordings and
ground-truth heart rate and EDA target values, (ii) the CNN to
learn relations between SEEG and biosginals, (iii) a gradient-
based explanation method (i.e. DeepLIFT) to identify most
relevant frequency and temporal features, and (iv) remove-
and-retrain explanations to explore the correlation with specific
brain regions.

The application of the analysis pipeline resulted in the fol-
lowing findings: strongest brain-peripheral correlations were
observed from contacts located in the CAN region of the
brain, for the alpha, theta and 52 to 58 Hz frequency band. A
temporal delay of 12 to 14 s between SEEG and EDA signal
was observed. These findings resulted from patient-specific
models, required due to the unique placement of electrodes
and contact points in each of the patients brain.

In the future, data from a larger patient cohort, monitored
over a longer time period, including a larger variety of
activities could be considered to identify more subtle and
generalized patterns between brain and peripheral signals.
Sequential models could be another promising extension of the
current analysis, for example, an RNN or LSTM with convo-
lutional layers could be more suitable for exploring temporal
dependencies in the data. In addition, transfer learning could
be leveraged to pretrain and refine the CNN on cohort and
individuals data, respectively. Furthermore, the explainability
methods could be applied down to a spatial resolution of
single contact points. Finally, not only the correlation, but also
the causality between the signals could be explored e.g. in a
Granger-causal framework.
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