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ABSTRACT

Survival analysis has gained significant attention in the medical domain with
many far-reaching applications. Although a variety of machine learning methods
have been introduced for tackling time-to-event prediction in unstructured data
with complex dependencies, clustering of survival data remains an under-explored
problem. The latter is particularly helpful in discovering patient subpopulations
whose survival is regulated by different generative mechanisms, a critical problem
in precision medicine. To this end, we introduce a novel probabilistic approach to
cluster survival data in a variational deep clustering setting. Our proposed method
employs a deep generative model to uncover the underlying distribution of both
the explanatory variables and the potentially censored survival times. We compare
our model to the related work on survival clustering in comprehensive experiments
on a range of synthetic, semi-synthetic, and real-world datasets. Our proposed
method performs better at identifying clusters and is competitive at predicting
survival times in terms of the concordance index and relative absolute error.

1 INTRODUCTION

Survival analysis (Rodriguez, |2007; D. G. Altman, 2020) requires inferring a relationship between
explanatory variables and potentially censored survival times. Classical approaches include the
Cox proportional hazards (PH) (Cox,|1972) and accelerated failure time (AFT) models (Buckley &
James), |1979). Recently, many machine learning techniques have been proposed to learn nonlinear
relationships from unstructured data, e.g. by|Faraggi & Simon|(1995)), Ranganath et al.|(2016)), Katz-
man et al.|(2018), and Kvamme et al.|(2019)). Clustering of survival data, on the other hand, remains
a relatively under-explored area. It allows identifying groups of individuals, or clusters, that are de-
termined jointly by explanatory variables and survival times. Several methods have been developed
for clustering survival data (see Appendix [A] for a detailed overview). However, the approaches
proposed so far either have limited scalability in high-dimensional unstructured data (Liverani et al.,
2020) or they focus on the discovery of purely outcome-driven clusters (Chapfuwa et al., 2020). In
contrast to the latter, we aim at modelling heterogeneity in the relationships between the covariates
and survival outcome (see Table [3|in Appendix |Alfor a comparison to several methods). This prob-
lem is particularly relevant in precision medicine (Collins & Varmus|, 2015). The identification of
such patient subpopulations could, for example, facilitate a better understanding of a disease itself
and a more personalised disease management (Fenstermacher et al., [2011)). For instance, certain
treatments might be effective only for subgroups of patients (Tanniou et al.,[2016) and discovering
these subgroups is crucial for developing personalised treatment strategies.

In this paper, we present a novel method for clustering survival data — variational deep survival
clustering (VaDeSC) that extends previous variational approaches for unsupervised deep cluster-
ing (Dilokthanakul et al.} 2016} Jiang et al., 2017) by incorporating a survival model, described by
a Weibull distribution with a cluster-specific parameters, in the generative process. We provide a
comprehensive comparison of the performance of VaDeSC to the related work on survival cluster-
ing on synthetic and real-world data. Empirically, the performance of VaDeSC is superior to the
considered baselines in terms of clustering and is comparable in terms of time-to-event modelling.
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2 METHOD

In this section, we present VaDeSC — the variational deep
g survival clustering model. Our approach builds on the suc-

@ @ @ cess of variational autoencoders (VAEs) (Kingma & Welling|
2014} Rezende et al., [2014)) and deep survival analysis (Ran-
K
: ©)

ganath et al., [2016)).

Problem Definition Throughout this paper we will consider
the following setting. Let D = {(x;, J;, ti)}f\il be a dataset
consisting of N triplets, one for each patient. Herein, x; de-
notes the explanatory variables, or features. 9; is the censor-
ing indicator: d; = O if the survival time of the i-th patient

e N
Cc z

@—> was censored, and §; = 1 otherwise. Finally, ¢; is the po-
tentially censored survival time. In survival cluster analysis,

L N ] we additionally consider a latent cluster assignment variable
¢i € {1,..., K} unobserved at training time. Here, K is the

total number of clusters. The problem then is twofold: (i) to

discover unobserved cluster assignments and (i7) model the

Figure 1: The generative model of survival distribution given x; and c;.

VaDeSC.

Generative Model Following the problem definition above, we assume that the data {x;, ¢;}¥
are generated from a random process consisting of the following steps. First, the cluster assignment
¢ € {1,..., K} is sampled from a categorical distribution. Then, a continuous latent embedding,
z € R, is sampled from a Gaussian distribution, whose mean and variance depend on the se-
lected cluster. Explanatory variables « are generated from a distribution conditioned on z, while ¢
depends on the cluster assignment ¢ and latent vector z. The generative process can be then sum-
marised as (i) ¢ ~ p(c; ) = 7e; (D) 2 ~ p(z|e; {1, bx}, {21, -, B }) =N (25 pe, Be);
@) x ~ p(x|z; v); and (iv) t ~ p(t|z,¢ {B1,....0K},k), where 7 is a vector of cluster
assignment probabilities; . and 3. are mean and variance of the Gaussian distribution corre-
sponding to cluster c¢ in the latent space; and 3. are cluster-specific survival parameters. Here,
p(x|z; v) = Bemoulli(x; p.) for binary-valued features and N (x; ., diag (62)) for real-
valued features, where p-, and o2 are produced by f(z; =) — a decoder neural network parame-

5
terised by . Figure|l| summarises the random process above graphically.

Survival Model p (t|z,¢; {Bi,...,8K}, k) refers to the cluster-specific survival model. Hence-
forth, we will use p(t|z,c) as a shorthand notation. We assume that given z and ¢, the uncen-
sored survival time follows the Weibull distribution given by Weibull (softplus (zT ,Bc) , k), where
softplus(z) = log (1 + exp(z)) (Ranganath et al. |2016); k is the shape parameter; and 3. are
cluster-specific survival parameters. Observe that softplus (2 3;) corresponds to the scale pa-
rameter of the Weibull distribution. Although we assume that the shape parameter & is global, an
adaptation to cluster-specific parameters, as proposed by |Liverani et al.|(2020), is straightforward.
Adjusting for right-censoring yields the following distribution:

RN £\ E 9 P\ F 1-4
p“'“)‘[xg (%) exp(‘ (%) )] [exp<‘ (%) )] 0
where AZ = softplus (2" 3.).

Joint Probability Distribution Assuming the generative process above, the joint probability of
x and ¢ can be written as p(x,t) = [, Zfil p(x,t,z,c) = [, Zfil p(xlt, z,c)p(t, z,c). Itis
important to note that = and ¢ are independent given z, so are  and c. Hence, we can rewrite the
joint probability of the data, also referred to as the likelihood function, given the parameters 7, pu,
3,9, 8,k as

K
p(zt; mp, 2,7, 6, k) =/Zp(w|Z; Yp(tlz, ¢; B, k)p(zle; p, X)p(e; m),  (2)
2 c=1
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where pp = {p1, ..., }, X ={21, ..., Xx},and 8 = {81, ..., Bk }

Evidence Lower Bound Since the likelihood function in Equation [2|is intractable, we derive a
lower bound of the log marginal probability of the data:

p(x|z;7)p(t|z, ¢ B, k)p(z|c; p, B)p(c; )
q(z,clzx,t)
We approximate the probability of the latent variables z and ¢ given the observations with a varia-

tional distribution ¢(z, c|z,t) = q(z|x)q(c|z,t), where the first term is the encoder parameterised
by a neural network. The second term is set equal-to the true probability p(c|z, t):

Ing(iE,t;Tl',/,L,Z,’)’,,B,k) < ]Eq(z,c|m,t) IOg (3)

ez f) = plelz 1) = P& U pltlz pzle)p(c) A
q(clz,t) = p(clz, 1) SE et S pitle, p(zlop(e) €y

Thus, the evidence lower bound (ELBO) can be written as

‘C(m7 t) = ]E‘Z(z\a:)p(dz,t) [logp(m|za 7) + lng(t‘Z, G 57 k) + 10gp(z|c; H, 2)

5)
+logp(c; ) —logq(z,clz,1)].

In practice, each of the terms of the ELBO in Equation [3 is approximated using the stochastic
gradient variational Bayes (SGVB) estimator (Kingma & Welling, 2014)). The detailed description
is provided in Appendix [B}

Missing Survival Time An additional challenge could arise when determining cluster assignments
at test-time. Patients’ survival times may not be observable; whereas our derivation of the distribu-
tion p(c|z,t) depends on p(t|z, ¢). Therefore, when the survival time of an individual is unknown,

using the Bayes’ rule we compute p(c|z) = %.

cluster assignment as ¢ = arg max,, p(c = v|z) and the predicted risk as 1/\Z (see Equation [1).

Consequently, we compute the hard

3 RESULTS

In this section, we compare the proposed VaDeSC model to the semi-supervised clustering (SSC)
(Bair & Tibshirani, 2004) and the survival cluster analysis (SCA) (Chapfuwa et al.l [2020). Addi-
tionally, we include k-means as a naive clustering baseline. We also consider the regularised Cox
PH (Simon et al.l 2011) and Weibull AFT models as time-to-event prediction baselines. For the
VaDeSC, we perform two ablations: (i) training a completely unsupervised version without mod-
elling the survival, which is essentially equivalent to GMMVAE/VaDE, and (ii) predicting cluster
assignments when the survival time is unobserved (see Section [2). Further implementation details
can be found in Appendix

The comparison is performed on a range of (semi-)synthetic and real-world survival datasets with
varying numbers of data points, explanatory variables, fractions of censored observations and cluster
structures. Appendix [C]contains a brief summary of all datasets. In particular, we consider synthetic
nonlinear data, semi-synthetic survival MNIST (survMNIST) (Polsterl, [2019), and real-world SUP-
PORT (Knaus et al. [1995) and FLChain (Kyle et al., 2006) data. For (semi-)synthetic data, we
focus on the evaluation of the clustering performance in terms of the accuracy (ACC), normalised
mutual information (NMI), and adjusted Rand index (ARI) (Emmons et al., 2016). For SUPPORT
and FLChain, we compare models w.r.t. time-to-event predictions using the concordance index (CI),
relative absolute error (RAE), and calibration slope (CAL, see Appendix D).

Clustering Table shows the results on synthetic and survMNIST data. As can be seen, VaDeSC
outperforms all models in terms of identifying clusters and achieves performance comparable to
SCA w.r.t. the CI. Interestingly, SCA completely fails to identify clusters correctly on synthetic data,
for which the generative process is very similar to the one assumed by VaDeSC. In the synthetic data,
the clusters do not have prominently different survival distributions: they are rather characterised by
differences in the association between the covariates and survival times. This could explain the
poor performance of SCA which tends to discover clusters with disparate survival distributions. It
appears that SSC offers little to no gain over the k-means based on all features. In both datasets,
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we see that including survival times results in considerable clustering performance improvements,
and the unsupervised variant of VaDeSC performs significantly worse than the full model. Overall,
these results suggest that VaDeSC compares favourably to the related methods at clustering survival
data.

Table 1: Test set performance on synthetic and survMNIST data. Averages and standard deviations
are reported across 5 and 10 independent simulations, respectively. Best results are shown in bold,

second best — in italic.

Training set results can be found in Appendix

Dataset Method ACC NMI ARI Cl
k-means 0.4440.04 | 0.064+0.04 | 0.05+0.03 —
Cox PH — — — 0.77+0.02
SSC 0.454+0.03 | 0.084+0.04 | 0.06+0.02 —

Synthetic SCA 0.454+0.09 | 0.05+0.05 0.0440.05 0.82+0.02
Ours (w/o surv.) | 0.74+0.21 | 0.534+0.12 | 0.55+0.20 —
Ours (w/o t) 0.88+0.03 | 0.601+0.07 0.67+0.07 0.84--0.02
Ours 0.90+0.02 | 0.66+0.05 | 0.73+0.05 : :
k-means 0.4940.06 | 0.314+0.04 | 0.22+0.04 —
Cox PH — — — 0.7440.04
SSC 0.4940.06 | 0.314+0.04 | 0.224+0.04 —

survMNIST || SCA 0.56+0.09 | 0.4640.06 | 0.33+0.10 | 0.79+0.06
Ours (w/o surv.) | 0.4740.07 | 0.384+0.08 | 0.24+0.08 —
Ours (w/o t) 0.574+0.09 | 0.51£0.09 | 0.374+0.10 0.80--0.05
Ours 0.584+0.10 | 0.554+0.11 | 0.39+0.11 : :

Time-to-event Prediction Table [2] shows time-to-event prediction results on SUPPORT and
FLChain datasets. RAE was evaluated based on the predicted median survival times. Observe that
overall VaDeSC performs comparably to the Weibull AFT and SCA models, even achieving the best
average results on SUPPORT. Surprisingly, SCA has a considerable variance w.r.t. the calibration
slope, sometimes yielding badly calibrated predictions. Note that for SCA, the obtained results differ
from the ones reported by |Chapfuwa et al.| (2020) likely due to differences in encoder architectures
and numbers of latent dimensions. On FLChain, SCA achieves a considerably better calibration than
the other two models, however, this is not surprising given that it optimises calibration explicitly.

Table 2: Test set performance on SUPPORT and FLChain datasets. Averages and standard devia-
tions are reported across 5 train-test splits. Best results are shown in bold.

Dataset Method Cl RAE CAL
Weibull AFT | 0.84+0.01 | 0.62+0.01 | 1.27+0.02

SUPPORT || SCA 0.83+£0.02 | 0.78+0.13 | 1.7440.52
Ours 0.85+0.01 | 0.53+0.02 | 1.2440.05
Weibull AFT | 0.80+0.01 | 0.72+0.01 | 2.18+0.07

FLChain SCA 0.78+0.02 | 0.69+0.08 | 1.33+0.24
Ours 0.80+£0.01 | 0.76£0.01 | 2.5240.08

4 CONCLUSION

In this paper, we introduced a novel deep probabilistic model for clustering survival data. In contrast
to existing approaches, our method can retrieve clusters of patients regulated by different survival
models and it can be trained efficiently in the framework of stochastic gradient variational inference.
Empirically, we show that our model offers an improvement in clustering performance compared to
the related work while staying competitive at time-to-event modelling.

Future Work Some further directions of work include introducing interpretable explanations of
our model’s predictions to facilitate its application in the medical domain; a fully Bayesian treat-
ment of global parameters to alleviate the need for a fixed number of clusters; and the inclusion of
more complex datasets. It would also be interesting to evaluate and compare obtained clustering
qualitatively, since the performance metrics considered so far do not fully reflect all aspects of the
underlying problem.
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A RELATED WORK

Herein, we provide a detailed overview of the related work. The proposed VaDeSC model (see
Section [2) builds on three major topics: probabilistic deep unsupervised clustering, mixtures of
regression models, and survival analysis. In addition, we discuss several recent close lines of work
focusing on clustering survival data.

Deep Unsupervised Clustering Clustering methods have been recently combined with deep neu-
ral networks to learn better representations of high-dimensional data (Min et al 2018)). Several
techniques have been proposed in the literature, featuring a wide range of neural network architec-
tures, such as autoencoders (AE), feed-forward networks, generative adversarial networks (GAN),
and variational autoencoders (VAE).

The VAE (Kingma & Welling| 2014; Rezende et al., |2014)) combines variational Bayesian methods
with the flexibility and scalability of neural networks. Gaussian mixture variational autoencoders
(GMMVAE) and variational deep embedding (VaDE) (Dilokthanakul et al., 2016} Jiang et al., 2017)
are variants of the VAE in which the prior is a Gaussian mixture distribution. With this assumption,
the data is clustered in the latent space of the VAE and the resulting inference model can be directly
optimised within the framework of stochastic gradient variational Bayes. Further extensions focus
on a fully Bayesian treatment of global parameters with a Dirichlet prior over the mixing coefficients
of the Gaussian mixture model (GMM) (Luo et al.|[2018; Johnson et al.,[2016), alleviating the need
to fix the number of clusters a priori.

Mixtures of Regression Models Mixtures of regression (McLachlan & Peel, [2004) model a re-
sponse variable by a mixture of individual regressions with the help of latent cluster assignments.
Such mixtures do not have to be limited to a finite number of components; for example, profile re-
gression (Molitor et al., 2010) leverages the Dirichlet mixture model for cluster assignment. Along
similar lines, within the machine learning community, mixture of experts models (MoE) were intro-
duced by Jacobs et al.|(1991).

Nonlinear Survival Analysis One of the first machine learning approaches for survival analysis
was Faraggi-Simon’s network (Faraggi & Simonl |19935), which was an extension of the classical
Cox PH model (Cox, [1972). Since then, an abundance of machine learning methods have been
developed: random survival forests (Ishwaran et al.||2008), deep survival analysis (Ranganath et al.,
2016), neural networks based on the Cox PH model (Katzman et al., 2018 |[Kvamme et al., [2019),
adversarial time-to-event modelling (Chapfuwa et al., 2018)), and deep survival machines (Nagpal
et al.l 2021a)). Of particular interest is the deep survival analysis (DSA) model which similar to our
approach (see Section [2), relies on learning latent representations and modelling the survival time
with a Weibull distribution (Ranganath et al.| [2016).

Mixture models mentioned above have been leveraged for survival analysis as well (Farewell, | 1982;
Rosen & Tanner| [1999; |[Nagpal et al.,[2021b). For instance, [Farewell| (1982)) considered fitting sep-
arate models for two subpopulations: short-term and long-term survivors. [Rosen & Tanner] (1999)
extended the classical Cox PH model with the MoE. A more recent approach of deep Cox mixtures
(DCM), introduced by |[Nagpal et al.| (2021b), fits a finite mixture of Cox regression models on rich
representations produced by an encoding neural network.

Clustering Survival Data Clustering of survival data has remained a relatively under-explored
area. Bair & Tibshirani| (2004)) propose pre-selecting variables based on univariate Cox regression
hazard scores and subsequently performing k-means clustering on the subset of features to discover
patient subpopulations. |Ahlqvist et al.| (2018) use Cox regression to explore differences across
subgroups of diabetic patients discovered by k-means and hierarchical clustering. In the spirit of
Farewell| (1982), [Mouli et al.| (2018)) propose a deep clustering approach to differentiate between
long-term and short-term survivors based on a modified Kuiper statistic in absence of end-of-life
signals. |Xia et al.[(2019) adapt a multitask learning approach for the outcome-driven clustering of
acute coronary syndrome patients. [Liverani et al. (2020) propose a clustering method for collinear
survival data based on the profile regression. They introduce a Dirichlet process mixture model with
cluster-specific parameters for the Weibull distribution. Last but not least, [Chapfuwa et al.| (2020)
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propose outcome-driven survival cluster analysis (SCA) based on a truncated Dirichlet process and
neural networks for the encoder and time-to-event prediction model.

Comparison to VaDeSC The proposed variational deep survival clustering (VaDeSC) method
(see Section [2)) differs from the previously introduced techniques in several ways. Table [3] sum-
marises key differences across the models most closely related to VaDeSC. In brief, deep survival
analysis (Ranganath et al., [2016)) is merely a survival analysis model and does not perform clus-
tering. Semi-supervised clustering (Bair & Tibshirani, [2004) does not tackle time-to-event predic-
tion directly and relies on k-means which limits its applicability to more complex and unstructured
datasets. While the approach by |Liverani et al.|(2020) is quite similar to VaDeSC, it does not learn
low-dimensional representations and relies on Markov chain Monte Carlo (MCMC) methods for
fitting which have limited scalability. Last but not least, survival cluster analysis (Chapfuwa et al.,
2020) is not equipped with a decoder arm and thus, only maximises the likelihood of survival time
alone.

Table 3: Comparison of the proposed VaDeSC model to the related approaches: deep survival anal-
ysis (DSA), semi-supervised clustering (SSC), profile regression for survival data, and survival clus-
ter analysis (SCA). Here, ¢ denotes survival time,  denotes explanatory variables, z corresponds to
latent representations, and K stands for the number of clusters.

DSA SSC Profile Regression SCA o

Ranganath et al._lZO] 6)_Bair & Tibshirani_(2004)_Liverani et al._¢202OI_Chapfuwa etal. _12020! urs
Performs
clustering? X v v v v
Predicts t? v X v v v
Learns z? v X X v v
Maximises
the likelihood of X X v X v
x and ¢ jointly?
Infers a simple
link between v X v X v
x/z and t?
Scales to un-
structured data? v X X v v
Optimises
calibration? X X X v X
Does not
require a fixed — X v v X
K a priori?

B ELBO TERMS

Below we explain how each term of the ELBO from Equation[5|can be optimized using Monte Carlo
sampling and stochastic gradient descent.

Reconstruction The reconstruction term can be approximated using the SGVB estimator (Kingma
& Welling| 2014). We use the same principle for the rest of the terms. Herein, we provide the
derivation for p(x|z; ~) = Bernoulli(x; p~), i.e. for binary-valued explanatory variables:

Eq(zla)p(c|=,t) l0g p(x]2; ¥) = Ey(2)2) log p(z|2; v) = *Zlogp (|25 ~)

=1

(6)

h \

L D
Zzzd log i)y + (1 — zq) log(1 — ),
=1 d=1

\©
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where L is the number of Monte Carlo samples in the SGVB estimator; ug) =f (z(l); ), 20 ~
q(z|lx) = N(z; pe,o03), [ne,logog] = g(x; 6) and g(-; 0) is an encoder neural network
parameterised by 0; x4 refers to the d-th component of & and D is the number of features. For other
data types, the distribution p(x|z; ) in Equation E]needs to be adjusted accordingly.

Survival The second term of the ELBO includes the survival time. Following the survival model
described by Equation[I] the SGVB estimator for the term is given by

L K
Eq(z|@)p(cl=t) logp(t|z, c; B, k) ZZlogp t\z(l c=v; B,k)plc= V|Z(l) t)
1=1v=1
L K N g N @
Z ZZ 0g {)\z(l) <)\z(l)> } exp <_ ()\z(z)) ) p(c = l/|z(l)7t),
where )\f,(l) = softplus (z(l)Tﬁ,,) .
Clustering The third term in Equation [5|corresponds to the clustering loss and is defined as
K
IE:q(z|w)p(c\z,t) lng(z|c; ey 2) = H':‘:q(z|:c) ZP(C = I/|Z, t) logp(z|c =V M, 2)
v=1
LK ®)
~ 23S ple = vz, ) logp(= Ve = v 1, %),
1=1v=1
Prior The fourth term can be approximated as
1 L K
]Eq(z|m)p(c\z t) logp & 7T Z ZP(C = I/|z(l)7 t) Ing(C =V ﬂ-) 9
l:l v=1

Variational Finally, the fifth term of the ELBO corresponds to the entropy of the variational dis-
tribution ¢(z, c|x, t):
_Eq(z\w)p(dz,t) IOg q(za C|$7 t) = Eq(z\w)p(dz,t) [log q(Z‘iE) + 10gp(C|Z, t)]
= —Eqy(zf) l0g 4(2[2) — Eq(ajayp(clz log plc|z, 1),

where the first term is the entropy of a multivariate Gaussian distribution with a diagonal covariance
matrix. We can then approximate the expression in Equation [I0]by

J L K
J
5 —(log(2m) +1) + Zlog 965~ T Z Zp c=v|zW ) logp(c = v|zW, 1), (11)

Jj=1 I=1v=1

(10)

where J is the number of latent space dimensions.

C DATASETS

In Table [ we provide an overview of the datasets used in the experiments. In the following, we
describe each dataset in details.

Table 4: Summary of the datasets. NV is the total number of data points, including train and test sets,
D is the number of explanatory variables (including dummy variables), K is the number of clusters
(if known). We report the average percentage of censored observations across all simulations and
whether the cluster sizes are balanced (if known).

Dataset N D % censored | K | Balanced?
Synthetic 60,000 | 1,000 30 3 Y
survMNIST 70,000 784 52 5 N
SUPPORT 9,105 59 32 — —
FLChain 6,524 7 70 — —

10
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C.1 SYNTHETIC DATA

Herein, we provide details on the generation of synthetic survival data used in our experiments (see
Section[3)). The procedure for simulating these data is very similar to the generative process assumed
by the proposed VaDeSC model (cf. Section [2)) and can be summarised as follows:

. Letm, = &, for1 <c < K.

2. Sample ¢; ~ Cat(m), for 1 <i < N.

3. Sample jic; ~ unif (—3,3),for1 <c< Kand1<j < J.

4. Let =, = 1;8., where S, € R’*” is a random symmetric, positive-definite matrix [T for

1<c¢c<K.

. Sample z; ~ N (pe,, ;) for1 <i < N.

6. Let gdec(z) = WyReLU (WlReLU (WOZ + bo) + bl) + by, where W, € RhXJ, W, €
RM<h W, € RP*" and by € R", by € R", by € R are random matrices and vectors[]
and h is the number of hidden units.

7. Let @; = gaec(2i), for 1 <i < N.
8. Sample 5. ; ~ unif (—10,10),for1 <c¢ < Kand0 < j < J.
9. Sample u; ~ Weibull (softplus (z, 3c,) 7k;)ﬂfor 1<i<N.
10. Sample §; ~ Bernoulli(1 — peeys), for 1 <4 < N,
11. Lett; = u; if 6; = 1, and sample ¢; ~ unif(0, u;) otherwise, for 1 <i < N.

W

Here, similar to Secti0n|2|, K is the number of clusters; IV is the number of data points; J is the
number of latent variables; D is the number of features; k is the shape parameter of the Weibull
distribution (see Equation [I); and pcens denotes the probability of censoring. The key difference
between clusters is in how latent variables z generate the survival time ¢: each cluster has a different
weight vector 3 that determines the scale of the Weibull distribution.

In our experiments, we fix K = 3, N = 60000, J = 16, D = 1000, k = 1, and pcens = 0.3. We
hold out 18000 data points as a test set and repeat simulations 5 times independently. A visualisation
of one simulation is shown in Figure 2] As can be seen in the t-SNE (van der Maaten & Hinton|
2008)) plot, three clusters are not as clearly separable based on covariates alone; on the other hand,
they have visibly distinct survival curves as shown in the Kaplan—-Meier plot.

—— Cluster 1
—— Cluster 2
—— Cluster 3

e
o

1
IS

Survival Probability
o
o
—

t-SNE Dimension 2
)

e Cluster 1
« Cluster 2

e Cluster 3 0.0
-80 :
-80 -60 -40 -20 0 20 40 60 0 100 200 300 400 500
t-SNE Dimension 1 Time
(a) t-SNE plot. (b) Kaplan—Meier plot.

Figure 2: Visualisation of one replicate of the synthetic data. ¢-SNE plot (on the left) is based on
the explanatory variables only. Kaplan—Meier curves (on the right) are plotted separately for each
cluster. Different colours correspond to different clusters.

!Generated using make_spd_mat rix from scikit-learn (IPedregosa et al.HZOl 1[).
Wy, W1, W, are generated using make_low_rank_matrix from scikit-learn (IPedregosa et al.|,|201 1[).
3We omitted bias terms for the sake of brevity.
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C.2 SURVIVAL MNIST DATA

We generate semi-synthetic survMNIST data as described by [Polsterl (2019) The generative pro-
cess can be summarised by the following steps:

1. Assign every digit in the original MNIST dataset (LeCun et al.,[2010) to one of K clusters
(ensure that every cluster contains at least one digit)

2. Sample risk score 7, ~ unif (3,15),for1 <c¢ < K.

3. Let A\, = T% exp(re), for 1 < ¢ < K, where Tj is the specified mean survival time and T%
is the baseline hazard.

4. Sample a; ~ unif(0, 1) and let u; = —'%&% for 1 <4 < N.

5. Let geens = 1 —peurs (U1: ), Where ¢o (+) denotes the a-th quantile.
6. Sample tcens ~ unif (ming <<y s, Geens)-

7. Let §; = 1if u; < teens, and §; = 0 otherwise, for 1 < i < N.

8. Lett; = u;if §; = 1, and t; = t,.ens Otherwise, for 1 <7 < N.

Herein, the notation is the same as in Appendix [C.I] It is important to note that as opposed to the
synthetic data, in survMNIST censoring is not independent from the uncensored survival time, since
individuals with larger survival times are more likely to be censored. Moreover, observe that here
Deens 18 only a lower bound on the probability of censoring and the fraction of censored observations
can be much larger than pcens. In this sense, the survMNIST dataset violates assumptions of the
conventional survival analysis models.

In our experiments, we fix K = 5 and peens = 0.3. We repeat simulations independently 10 times.
The train-test split is defined as in the original MNIST data (60,000 vs. 10,000). Table E] shows
an example of cluster and risk score assignments in one of the simulations. The resulting dataset
is visualised in Figure[3] Observe that the clusters are not well-distinguishable based on covariates
alone. Also note that some clusters contain many censored data points, whereas some do not contain
any, as shown in the Kaplan—Meier plot.

Table 5: An example of an assignment of MNIST digits to clusters and risk scores under K = 5.

Digit | Cluster | Risk Score
0 2 13.12
1 3 5.17
2 4 11.60
3 2 13.12
4 1 7.62
5 5 2.03
6 2 13.12
7 4 11.60
8 1 7.62
9 3 5.17

“Based on the original implementation available at
https://github.com/sebp/survival-cnn-estimator,

12
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Figure 3: Visualisation of one replicate of the survMNIST dataset.

C.3 SUPPORT & FLCHAIN

The Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments (SUP-
PORT) (Knaus et al.l [1995)) consists of seriously ill hospitalised adults from five tertiary care aca-
demic centres in the United States. It includes demographic, laboratory, and scoring data acquired
from patients diagnosed with cancer, chronic obstructive pulmonary disease, congestive heart fail-
ure, cirrhosis, acute renal failure, multiple organ system failure, and sepsis. In this dataset, we
impute missing entries with medians and modes for numerical and categorical features, respectively.
This dataset is publicly available.

The study of the relationship between serum free light chain (FLChain) and mortality (Kyle et al.,
2006; Dispenzieri et al., [2012) was conducted in Olmsted County, Minnesota in the United States.
The dataset includes demographic and laboratory variables alongside with the recruitment year. In
our analysis, we omit all patients with missing features. FLChain is by far the most heavily censored
and low-dimensional among the considered datasets (see Table E[) Similar to SUPPORT, FLChain
data are publicly available.

D EVALUATION METRICS

For clustering performance, we employ ARI and NMI as implemented in the sklearn.metrics
module of scikit-learn (Pedregosa et all [2011). Clustering accuracy is evaluated by finding an
optimal mapping between assignments and true cluster labels using the Hungarian algorithm, as
implemented in sklearn.utils.linear_assignment..

The concordance index (Raykar et al.| [2007) evaluates how well a survival model is able to rank
individuals in terms of their risk. Given observed survival times ¢;, predicted risk scores 7;, and
censoring indicators §;, the concordance index is defined as

N N
Zi:l Zj:l 1tj<t'i177j>'r)i6j
N N :
Ei:l Zj:l 1tj<ti6j

Thus, a perfect ranking achieves a CI of 1.0, whereas a random ranking is expected to have a CI of
0.5. We use the lifelines implementation of the CI (Davidson-Pilon et al., 2021).

Cl =

(12)

Relative absolute error (Yu et al.,|2011) evaluates predicted survival times in terms of thejr relative
deviation from the observed survival times. In particular, given predicted survival times ¢;, RAE is

defined as N . .
2= 0i

Note that we only evaluate RAE on uncensored observations.

RAE =

Last but not least, similar to |Chapfuwa et al.| (2020) we use the calibration slope to evaluate the
calibration of models. It is desirable for the predicted survival times to match with the empirical

13
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marginal distribution of ¢. Calibration slope indicates whether a model tends to under- or overesti-
mate risk on average, and thus, an ideal calibration slope is 1.0. We use the implementation by Chap-
fuwa et al.|(2020) available at https://github.com/paidamoyo/survival_cluster_
analysis.

E IMPLEMENTATION DETAILS

Herein, we provide implementation details for the experiments described in Section 3]

For all datasets, we re-scale survival times to be in [0.001, 1.001]. For survMNIST we re-scale the
features to be in [0, 1]. For the other datasets, we re-scale the features to zero-mean and unit-variance.
Categorical features are encoded using dummy variables.

We implemented the VaDeSC model in TensorFlow (Abadi et al.,|2015). Currently, the code is only
available on request. We use two different architectures for encoders and decoders as described
in Tables [ and [7]] Hyperparameters across all datasets are reported in Table [§] We use L = 1
Monte Carlo samples for the SGVB estimator (see Appendix [B). As opposed to many unsupervised
clustering methods, we do not pre-train autoencoder weights. Generally, we observe little variability
in performance when varying the number of latent dimensions, shape of the Weibull distribution or
mini-batch size.

Semi-supervised Clustering We re-implemented SSC in Python based on the R code (R Core
Team, 2020) provided by Bair & Tibshirani| (2004). Since SSC requires specifying a threshold for
selecting a subset of features for k-means clustering, we report the best results achieved w.r.t. NMI
across a range of thresholds.

Survival Cluster Analysis We use the original implementation of SCA available at https:
//github.com/paidamoyo/survival_cluster_analysis. To facilitate a fair com-
parison to VaDeSC, we use the same architectures for the encoder (see Tables[6]and[7) and the same
numbers of latent dimensions (see Table [§). We truncate the Dirichlet process at the true number
of clusters for synthetic and survMNIST data. For SUPPORT and FLChain, we set the maximum
number of cluster at K = 25. For all datasets, we use a concentration parameter of 2.0. We train the
model for 300 epochs on survMNIST and synthetic data and for 400 and 600 epochs on SUPPORT
and FLChain, respectively.

Other Baselines For Cox PH and Weibull AFT models, we use the implementation in lifelines
(Davidson-Pilon et all 2021). We use penalised versions of these models by setting the penalty
weight to 0.01. To avoid numerical instability, we remove all features with variance close to 0. For
k-means clustering, we use the scikit-learn implementation (Pedregosa et al., 201 1}).
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Table 6: Encoder and decoder architectures used for synthetic and survMNIST data. t fk1 stands
for tensorflow.keras.layers. encoded_size corresponds to the number of latent di-
mensions, J; and inp_shape is the number of input dimesions, D. For survMNIST, the activation
of the last decoder layer is set to  sigmoid’.

Encoder

tfkl.Dense (500, activation=’'relu’)

tfkl.Dense (500, activation='relu’)

tfkl.Dense (2000, activation=’'relu’)

mu = tfkl.Dense (encoded_size, activation=None);
sigma = tfkl.Dense (encoded.size, activation=None)

LN SR

Decoder

tfkl.Dense (2000, activation=’relu’)
tfkl.Dense (500, activation='relu’)
tfkl.Dense (500, activation=’'relu’)
tfkl.Dense (inp_shape)

=W -

Table 7: Encoder and decoder architectures used for SUPPORT and FLChain data.

Encoder

1 tfkl.Dense (50, activation=’relu’)

2 tfkl.Dense (100, activation=’relu’)

3 mu = tfkl.Dense(encoded_size, activation=None);
sigma = tfkl.Dense (encoded._size, activation=None)
Decoder

1 tfkl.Dense (100, activation=’relu’)

2 tfkl.Dense (50, activation='relu’)

3 tfkl.Dense (inp_shape)

Table 8: Hyperparameters used for training the VaDeSC across all datasets. Herein, J denotes the
number of latent dimensions; K is the number of clusters; and % is the shape parameter of the
Weibull distribution. MSE stands for mean squared error; CE — for cross entropy.

Dataset Ianan: Minsi:batch Learning # epochs Reconstruction
ize Rate Loss

Synthetic 16| 3 |1.0 256 0.001 1,000 MSE

survMNIST || 16 | 5 | 1.0 256 0.001 300 Binary CE

SUPPORT 16 | 4 |20 256 0.001 300 MSE

FLChain 4 12120 256 0.001 300 MSE

15
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F FURTHER RESULTS

Table 9: Training set performance on synthetic and survMNIST data. Averages and standard devia-
tions are reported across 5 and 10 independent simulations, respectively. Best results are shown in
bold, second best in italic.

Dataset Method ACC NMI ARI CI
k-means 0.4440.04 | 0.06+0.04 | 0.05+0.03 —
Cox PH — — — 0.78+0.02
SSC 0.44+0.02 | 0.08+0.04 | 0.06+0.02 —

Synthetic SCA 0.45+0.09 | 0.0540.05 | 0.05+0.05 | 0.83+0.02
Ours (w/o surv.) | 0.73£0.21 | 0.53+£0.12 | 0.55+0.21 —
Ours (w/o t) 0.88+0.03 | 0.60+£0.07 | 0.67+0.07 0.85-0.01
Ours 0.90+0.02 | 0.66+0.05 | 0.74-+0.05 : :
k-means 0.4840.06 | 0.30+0.04 | 0.21£0.04 —
Cox PH — — — 0.77+0.05
SSC 0.4840.06 | 0.304+0.04 | 0.21£0.04 —

survMNIST || SCA 0.56+0.09 | 0.4740.07 | 0.34+0.11 | 0.83+0.05
Ours (w/o surv.) | 0.4740.07 | 0.384+0.08 | 0.24=+0.07 —
Ours (w/o t) 0.57+0.10 | 0.5240.10 | 0.37+0.10 0.83-0.06
Ours 0.58+0.10 | 0.54+0.12 | 0.39+0.11 : :
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